日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在xoy平面上有一點列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn),…,對每個自然數(shù)n,點Pn位于函數(shù),(0<a<10)的圖象上,且點Pn、點(n,0)與點(n+1,0)構(gòu)成一個以Pn為頂點的等腰三角形.
          (Ⅰ)求點Pn的縱坐標bn的表達式;
          (Ⅱ)若對每個自然數(shù)n,以bn,bn+1,bn+2為邊長能構(gòu)成一個三角形,求a的取值范圍;
          (Ⅲ)設(shè),若a取(Ⅱ)中確定的范圍內(nèi)的最小整數(shù),問數(shù)列{Cn}前多少項的和最大?試說明理由.(lg2=0.3010,lg7=0.8450)
          【答案】分析:(Ⅰ)由于三角形為等腰三角形,所以點Pn(an,bn)在兩點(n,0)與(n+1,0)連線的中垂線上,結(jié)合點Pn(an,bn)在函數(shù)(0<a<10)的圖象上,可得結(jié)論;
          (Ⅱ)根據(jù)函數(shù)(0<a<10)是單調(diào)遞減,可得對每一個自然數(shù)n有bn>bn+1>bn+2,進而由bn,bn+1,bn+2為邊長能構(gòu)成一個三角形,可得bn+2+bn+1>bn,由此可求a的取值范圍;
          (Ⅲ)先確定數(shù)列{Cn}是一個遞減的等差數(shù)列,再根據(jù)當(dāng)Cn≥0且Cn+1<0時,數(shù)列{Cn}的前n項的和最大,即可得到結(jié)論.
          解答:解:(Ⅰ)由于三角形為等腰三角形,所以點Pn(an,bn)在兩點(n,0)與(n+1,0)連線的中垂線上,
          從而an=n+,又因為點Pn(an,bn)在函數(shù)(0<a<10)的圖象上,所以bn=2000()n+;
          (Ⅱ)∵函數(shù)(0<a<10)是單調(diào)遞減,∴對每一個自然數(shù)n有bn>bn+1>bn+2,
          又因為以bn,bn+1,bn+2為邊長能構(gòu)成一個三角形,所以bn+2+bn+1>bn,從而
          ∵0<a<10,∴5(-1)<a<10
          (Ⅲ)∵5(-1)<a<10,∴a=7,∴,
          于是
          ∴數(shù)列{Cn}是一個遞減的等差數(shù)列.
          因此,當(dāng)且僅當(dāng)Cn≥0且Cn+1<0時,數(shù)列{Cn}的前n項的和最大.
          得n≤20.8,
          ∴n=20.
          點評:本題考查數(shù)列知識的綜合運用,考查數(shù)列的通項與求和,確定數(shù)列的通項是關(guān)鍵,具有一定的難度
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在xoy平面上有一點列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn),…,對每一個(n∈N+),點Pn(an,bn)在函數(shù)y=2000(
          a10
          )
          x
          (0<a<10)的圖象上,且點Pn(an,bn)與點(n,0)和(n+1,0)構(gòu)成一個以點Pn(an,bn)為頂點的等腰三角形.
          (1)求點Pn(an,bn)的縱坐標bn關(guān)于n的表達式;
          (2)若對每一個自然數(shù)n,以bn,bn+1,bn+2能構(gòu)成一個三角形,求a的范圍;
          (3)設(shè)Bn=b1•b2•b3•…•bn(n∈N+),若a。2)中確定的范圍內(nèi)的最小整數(shù)時,求{Bn}中的最大項.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2000•上海)在XOY平面上有一點列P1(a1,b1),P2(a2,b2),…,Pn(an,bn),…,對每個自然數(shù)n,點P,位于函數(shù)y=2000(
          a10
          )n(0<a<10)
          的圖象上,且點Pn,點(n,0)與點(n+1.0)構(gòu)成一個以Pn為頂點的等腰三角形.
          (Ⅰ)求點Pn的縱坐標bn的表達式.
          (Ⅱ)若對每個自然數(shù)n,以bn,bn+1,bn+2為邊長能構(gòu)成一個三角形,求a取值范圍.
          (Ⅲ)設(shè)Bn=b1b2…bn(n∈N).,若a。2)中確定的范圍內(nèi)的最小整數(shù),求數(shù)列{Bn}的最大項的項數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2000•上海)在xoy平面上有一點列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn),…,對每個自然數(shù)n,點Pn位于函數(shù)y=2000(
          a10
          )x
          ,(0<a<10)的圖象上,且點Pn、點(n,0)與點(n+1,0)構(gòu)成一個以Pn為頂點的等腰三角形.
          (Ⅰ)求點Pn的縱坐標bn的表達式;
          (Ⅱ)若對每個自然數(shù)n,以bn,bn+1,bn+2為邊長能構(gòu)成一個三角形,求a的取值范圍;
          (Ⅲ)設(shè)Cn=lg(bn),n∈N*,若a取(Ⅱ)中確定的范圍內(nèi)的最小整數(shù),問數(shù)列{Cn}前多少項的和最大?試說明理由.(lg2=0.3010,lg7=0.8450)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          xOy平面上有一點列P1(a1,b1),P2(a2,b2),…,Pn(an,bn)…,對每個自然數(shù)nPn位于函數(shù)y=2000()x(0<a<1)的圖像上,且點Pn,點(n,0)與點(n+1,0)構(gòu)成一個以Pn為頂點的等腰三角形.

          (1)求點Pn的縱坐標bn的表達式;

          (2)若對于每個自然數(shù)n,以bn,bn+1,bn+2為邊長能構(gòu)成一個三角形,求a的取值范圍;

          (3)設(shè)Cn=lg(bn)(n∈N*),若a取(2)中確定的范圍內(nèi)的最小整數(shù),問數(shù)列{Cn}前多少項的和最大?試說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在xoy平面上有一點列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn),…,對每一個(n∈N+),點Pn(an,bn)在函數(shù)y=2000數(shù)學(xué)公式(0<a<10)的圖象上,且點Pn(an,bn)與點(n,0)和(n+1,0)構(gòu)成一個以點Pn(an,bn)為頂點的等腰三角形.
          (1)求點Pn(an,bn)的縱坐標bn關(guān)于n的表達式;
          (2)若對每一個自然數(shù)n,以bn,bn+1,bn+2能構(gòu)成一個三角形,求a的范圍;
          (3)設(shè)Bn=b1•b2•b3•…•bn(n∈N+),若a。2)中確定的范圍內(nèi)的最小整數(shù)時,求{Bn}中的最大項.

          查看答案和解析>>

          同步練習(xí)冊答案