日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖:三棱柱ABC-A1B1C1中,AB=AC=BC=2,AA1=3,側(cè)棱AA1⊥底面ABC,D為C1B的中點(diǎn),P為AB邊上的動(dòng)點(diǎn).
          (1)若P為AB中點(diǎn),求證:PD∥平面ACC1A1
          (2)若DP⊥AB,求四棱錐P-ACC1A1的體積.
          分析:(1)P為AB中點(diǎn),連結(jié)AC1,證明PD∥AC1,利用直線與平面平行的判定定理證明PD∥平面ACC1A1
          (2)若DP⊥AB,求四棱錐P-ACC1A1的體積.
          解答:解:(1)證明:P為AB中點(diǎn),連結(jié)AC1,因?yàn)镈為C1B的中點(diǎn),所以PD是三角形ABC1的中位線,所以PD∥AC1,AC1?平面ACC1A1,由直線與平面平行的判定定理,可知PD∥平面ACC1A1
          (2)三棱柱ABC-A1B1C1中,AB=AC=BC=2,DP⊥AB,
          ∴AP=3PB,解得BP=
          1
          2
          ,
          又AA1=3,側(cè)棱AA1⊥底面ABC,AC1=
          13
          ,
          所以四棱錐P-ACC1A1的體積,VP-ACC1A1=
          3
          4
          VB-ACC1A1=
          3
          4
          ×
          1
          3
          ×2×3×
          3
          =
          3
          3
          2
          點(diǎn)評(píng):本題考查直線與平面平行的判定定理,幾何體的體積的求法,考查計(jì)算能力、空間想象能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,則直線A1C1和平面ACB1的距離等于
           
          精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),AB=AC.
          (1)證明:DE⊥平面BCC1
          (2)設(shè)B1C與平面BCD所成的角的大小為30°,求二面角A-BD-C.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•黑龍江)如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=
          12
          AA1,D是棱AA1的中點(diǎn).
          (Ⅰ)證明:平面BDC1⊥平面BDC
          (Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,三棱柱ABC-A1B1C1的底面ABC為正三角形,側(cè)棱AA1⊥平面ABC,D是BC中點(diǎn),且AA1=AB
          (1)證明:AD⊥BC1
          (2)證明:A1C∥平面AB1D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•大連二模)如圖,三棱柱ABC-A′B′C′,cc′=
          2
          ,BC′=
          2
          ,BC=2,△ABC是以BC為底邊的等腰三角形,平面ABC⊥平面BCC′B′,E、F分別為棱AB、CC′的中點(diǎn).
          (I)求證:EF∥平面A′BC′;
          (Ⅱ)若AC≤
          2
          ,且EF與平面ACC'A'所成的角的余弦為
          7
          3
          ,求二面角C-AA'-B的大小.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案