日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE,G是BC的中點.沿EF將梯形ABCD翻折,

          使平面AEFD⊥平面EBCF (如圖).

          (1)當時,求證:BD⊥EG ;

          (2)若以F、B、C、D為頂點的三棱錐的體積記為,求的最大值;

          (3)當取得最大值時,求二面角D-BF-C的余弦值.

                                                                                           

           

          【答案】

          (1)見解析;(2)有最大值為.(3)二面角的余弦值為-

          【解析】本題考查的知識點是二面角的平面角及求法,棱錐的體積,直線與平面垂直的性質(zhì),其中(1)的關鍵是建立坐標系,將線線垂直轉(zhuǎn)化為向量數(shù)量積為0,(2)的關鍵是利用等體積法將三棱錐BCDF的體積,轉(zhuǎn)化為四棱錐ABCF的體積,(3)的關鍵是求出平面BDF和平面BCF的法向量,將二面角問題轉(zhuǎn)化為向量的夾角.

          (1)由AEFD⊥平面EBCF,EF∥BC∥AD,可得AE⊥EF,進而由面面垂直的性質(zhì)定理得到AE⊥平面EBCF,進而建立空間坐標系E-xyz,求出BD,EG的方向向量,根據(jù)兩個向量的數(shù)量積為0,即可證得BD⊥EG;

          (2)根據(jù)等體積法,我們可得f(x)=VD-BCF=VA-BFC的解析式,根據(jù)二次函數(shù)的性質(zhì),易求出f(x)有最大值;

          (3)根據(jù)(2)的結論,我們求出平面BDF和平面BCF的法向量,代入向量夾角公式即可得到二面角D-BF-C的余弦值.

          (1)∵平面平面,

          AE⊥EF,∴AE⊥平面,AE⊥EF,AE⊥BE,

          又BE⊥EF,故可如圖建立空間坐標系E-xyz.

          ,又為BC的中點,BC=4,

          .則A(0,0,2),B(2,0,0),G(2,2,0),D(0,2,2),E(0,0,0),

          (-2,2,2),(2,2,0),

          (-2,2,2)(2,2,0)=0,∴.………………4分

          (2)∵AD∥面BFC,所以

          =VA-BFC,

          有最大值為

          (3)設平面DBF的法向量為,∵AE=2, B(2,0,0),D(0,2,2),

          F(0,3,0),∴(-2,2,2),

          ,即,

          ,∴

          ,面BCF一個法向量為,則cos<>=,

          由于所求二面角D-BF-C的平面角為鈍角,所以此二面角的余弦值為-

           

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
          3
          sin2x+2sin(
          π
          4
          +x)cos(
          π
          4
          +x)

          (I)化簡f(x)的表達式,并求f(x)的最小正周期;
          (II)當x∈[0,
          π
          2
          ]  時,求函數(shù)f(x)
          的值域.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

          (本小題滿分14分)
          已知=2,點()在函數(shù)的圖像上,其中=.
          (1)證明:數(shù)列}是等比數(shù)列;
          (2)設,求及數(shù)列{}的通項公式;
          (3)記,求數(shù)列{}的前n項和,并證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

           (本小題滿分14分)

          某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

          (Ⅰ)寫出銷售額關于第天的函數(shù)關系式;

          (Ⅱ)求該商品第7天的利潤;

          (Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

          (本小題滿分14分)已知的圖像在點處的切線與直線平行.

          ⑴ 求,滿足的關系式;

          ⑵ 若上恒成立,求的取值范圍;

          ⑶ 證明:

           

          查看答案和解析>>

          同步練習冊答案