日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=,g(x)=alnx,aR.
          (1)若曲線y=f(x)與曲線y=g(x)相交,且在交點處有相同的切線,求a的值及該切線的方程;
          (2)設(shè)函數(shù)h(x)=f(x)﹣g(x),當h(x)存在最小值時,求其最小值的解析式;
          (3)對(2)中的,證明:當a(0,+)時,1
          解:(1)函數(shù)f(x)=,g(x)=alnx,aR.
          f '(x)=,g '(x)=(x>0),
          由已知得解得
          兩條曲線交點的坐標為(e2,e).
          切線的斜率為k=f '(e2)=,
          切線的方程為y﹣e=(x﹣e2).
          (2)由條件知h(x)=﹣alnx(x>0),
          h '(x)==,
          ①當a>0時,令h '(x)=0,解得x=4a2
          當0<x<4a2時,h '(x)<0,h(x)在(0,4a2)上單調(diào)遞減;
          當x>4a2時,h '(x)>0,h(x)在(4a2,+)上單調(diào)遞增.
          x=4a2是h(x)在(0,+)上的惟一極值點,且是極小值點,從而也是h(x)的最小值點.
          最小值(a)=h(4a2)=2a﹣aln(4a2)=2a[1﹣ln (2a)].
          ②當a0時,h '(x)=>0,h(x)在(0,+)上單調(diào)遞增,無最小值.
          故h(x)的最小值(a)的解析式為(a)=2a[1﹣ln (2a)](a>0).
          (3)證明:由(2)知(a)=2a(1﹣ln 2﹣ln a),
          '(a)=﹣2ln (2a).
          '(a)=0,解得a=
          當0<a<時,'(a)>0, (a)在(0,)上單調(diào)遞增;
          當a>時,'(a)<0, (a)在(,+)上單調(diào)遞減.
          (a)在a=處取得極大值?()=1.
          (a)在(0,+)上有且只有一個極值點,
          )=1也是(a)的最大值.
          當a(0,+)時,總有(a)1.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
          (1)求函數(shù)f(x)的最小正周期;
          (2)若函數(shù)y=f(2x+
          π
          4
          )
          的圖象關(guān)于直線x=
          π
          6
          對稱,求φ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
          (1)求x<0,時f(x)的表達式;
          (2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=aInx-ax,(a∈R)
          (1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
          1
          x

          (2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
          m
          2
          ]
          ,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
          1
          f(n)
          }
          的前n項和為Sn,則S2010的值為( 。
          A、
          2011
          2012
          B、
          2010
          2011
          C、
          2009
          2010
          D、
          2008
          2009

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
           

          查看答案和解析>>

          同步練習(xí)冊答案