日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)f(x)是定義在R上的偶函數(shù),其圖像關(guān)于直線x=1對稱,對任意x1、x2∈[0,],都有f(x1+x2)=f(x1f(x2),且f(1)=a>0.
          (1)求f()、f();
          (2)證明f(x)是周期函數(shù);
          (3)記an=f(2n+),求 
          (1) f()=a, f()=a (2) 證明略(3)
          (1)因為對x1,x2∈[0,],都有f(x1+x2)=f(x1f(x2),所以f(x)=,  x∈[0,1]
          又因為f(1)=f(+)=f(f()=[f()]2
          f()=f(+)=f(f()=[f)]2
          f(1)=a>0
          f()=a, f()=a
          (2)證明:依題意設(shè)y=f(x)關(guān)于直線x=1對稱,故f(x)=f(1+1-x),
          即 f(x)=f(2-x),x∈R.
          又由f(x)是偶函數(shù)知 f(-x)=f(x),x∈R
          f(-x)=f(2-x),x∈R.
          將上式中-xx代換得f(x)=f(x+2),這表明f(x)是R上的周期函數(shù),且2是它的一個周期.
          (3)由(1)知f(x)≥0,x∈[0,1]
          f()=f(n·)=f(+(n-1))=f(f((n-1)·)=……
          =f(f()·……·f()
          =[f()]n=a
          f()=a.
          又∵f(x)的一個周期是2
          f(2n+)=f(), 
          an=f(2n+)=f()=a.
          因此an=a
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)f(x)=,g(x)=.
          (1)證明f(x)滿足f(-x)=-f(x),并求f(x)的單調(diào)區(qū)間;
          (2)分別計算f(4)-5f(2)g(2)和f(9)-5f(3)g(3)的值,由此概括出涉及函數(shù)f(x)和g(x)的對所有不等于零的實數(shù)x都成立的一個等式,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          證明方程上至多有一實根.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          函數(shù)f(x)=x2+2x+5在[t,t+1]上的最小值為(t),求(t)的表達式。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知f(x)=lg(x+1),g(x)=2lg(2x+t),(t∈R是參數(shù)).
          (1)當(dāng)t=–1時,解不等式f(x)≤g(x);
          (2)如果x∈[0,1]時,f(x)≤g(x)恒成立,求參數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

           如果函數(shù)f(x)在R上為奇函數(shù),在(-1,0)上是增函數(shù),且f(x+2)=-f(x),試比較f(),f(),f(1)的大小關(guān)系_________. 

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)f(x)=.
          (1)證明:f(x)在其定義域上的單調(diào)性;
          (2)證明: 方程f-1(x)=0有惟一解;
          (3)解不等式fx(x)]<.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分13分)
          某化工企業(yè)生產(chǎn)某種產(chǎn)品,生產(chǎn)每件產(chǎn)品的成本為3元,根據(jù)市場調(diào)查,預(yù)計每件產(chǎn)品的出廠價為x元(7≤x≤10)時,一年的產(chǎn)量為(11 – x)2萬件;若該企業(yè)所生產(chǎn)的產(chǎn)品能全部銷售,則稱該企業(yè)正常生產(chǎn);但為了保護環(huán)境,用于污染治理的費用與產(chǎn)量成正比,比例系數(shù)為常數(shù)a (1≤a≤3).
          (Ⅰ)求該企業(yè)正常生產(chǎn)一年的利潤L (x)與出廠價x的函數(shù)關(guān)系式;       
          (Ⅱ)當(dāng)每件產(chǎn)品的出廠價定為多少元時,企業(yè)一年的利潤最大,并求最大利潤.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          函數(shù)滿足則常數(shù)等于(   )
           
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊答案