日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知實(shí)數(shù)q≠0,數(shù)列{an}的前n項(xiàng)和Sn,a1≠0,對(duì)于任意正整數(shù)m,n且m>n,Sn-Sm=qmSn-m恒成立.
          (1)證明數(shù)列{an}是等比數(shù)列;
          (2)若正整數(shù)i,j,k成公差為3的等差數(shù)列,Si,Sj,Sk按一定順序排列成等差數(shù)列,求q的值.
          分析:(1)令n=m+1,則由題意可得 Sm+1-Sm=qm•S1,即 am+1=a1•qm,可得 
          am+1
          am
          =q,故有
          an+1
          an
          =q(常數(shù)),可得數(shù)列{an}是等比數(shù)列.
          (2)不妨設(shè)i,i+3,i+6,分Si,Si+3,Si+6成等差數(shù)列、Si+3,Si,Si+6成等差數(shù)列、Si+3,Si+6,Si成等差數(shù)列這三種情況,分別求出公比q的值.
          解答:解:(1)令n=m+1,則由題意可得 Sm+1-Sm=qm•S1,即 am+1=a1•qm
          故有 am=a1•qm-1,∴
          am+1
          am
          =q,∴
          an+1
          an
          =q(常數(shù)),
          所以數(shù)列{an}是等比數(shù)列,
          (2)不妨設(shè)公差為3的等差數(shù)列為 i,i+3,i+6,若Si,Si+3,Si+6成等差數(shù)列,
          則 ai+1+ai+2+ai+3=ai+4+ai+5+ai+6=( ai+1+ai+2+ai+3 )q3,
          即 1=q3,解得 q=1.
          若Si+3,Si,Si+6成等差數(shù)列,則-( ai+1+ai+2+ai+3 )=( ai+1+ai+2+ai+3+ai+4+ai+5+ai+6 ),
          ∴2( ai+1+ai+2+ai+3 )+( ai+1+ai+2+ai+3 )q3=0,即 2+q3=0,解得 q=-
          32

          若Si+3,Si+6,Si成等差數(shù)列,則有 ( ai+4+ai+5+ai+6)=-( ai+1+ai+2+ai+3+ai+4+ai+5+ai+6 ),
          ∴2( ai+1+ai+2+ai+3 )q3+( ai+1+ai+2+ai+3 )=0,∴2q3+1=0,解得q=-
          1
          32

          綜上可得,q的值等于1,或等于-
          32
          ,或等于-
          1
          32
          點(diǎn)評(píng):本題主要考查等比關(guān)系的確定,等差數(shù)列的定義和性質(zhì),根據(jù)數(shù)列的遞推關(guān)系求通項(xiàng),體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知實(shí)數(shù)q≠0,數(shù)列{an}的前n項(xiàng)和Sn,a1≠0,對(duì)于任意正整數(shù)m,n且m>n,數(shù)學(xué)公式恒成立.
          (1)證明數(shù)列{an}是等比數(shù)列;
          (2)若正整數(shù)i,j,k成公差為3的等差數(shù)列,Si,Sj,Sk按一定順序排列成等差數(shù)列,求q的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州市寶應(yīng)縣曹甸高級(jí)中學(xué)高三(上)第二次效益檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

          已知實(shí)數(shù)q≠0,數(shù)列{an}的前n項(xiàng)和Sn,a1≠0,對(duì)于任意正整數(shù)m,n且m>n,恒成立.
          (1)證明數(shù)列{an}是等比數(shù)列;
          (2)若正整數(shù)i,j,k成公差為3的等差數(shù)列,Si,Sj,Sk按一定順序排列成等差數(shù)列,求q的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州市高郵市界首中學(xué)高三(上)周考數(shù)學(xué)試卷(3)(解析版) 題型:解答題

          已知實(shí)數(shù)q≠0,數(shù)列{an}的前n項(xiàng)和Sn,a1≠0,對(duì)于任意正整數(shù)m,n且m>n,恒成立.
          (1)證明數(shù)列{an}是等比數(shù)列;
          (2)若正整數(shù)i,j,k成公差為3的等差數(shù)列,Si,Sj,Sk按一定順序排列成等差數(shù)列,求q的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州市寶應(yīng)縣曹甸高級(jí)中學(xué)高三(上)第二次效益檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

          已知實(shí)數(shù)q≠0,數(shù)列{an}的前n項(xiàng)和Sn,a1≠0,對(duì)于任意正整數(shù)m,n且m>n,恒成立.
          (1)證明數(shù)列{an}是等比數(shù)列;
          (2)若正整數(shù)i,j,k成公差為3的等差數(shù)列,Si,Sj,Sk按一定順序排列成等差數(shù)列,求q的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案