日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 正方體中,分別是棱的中點(diǎn),則異面直線所成的角等于__________.

          試題分析:先通過(guò)平移將兩條異面直線平移到同一個(gè)起點(diǎn)B,得到的銳角∠A1BC1就是異面直線所成的角,在三角形A1BC1中求出此角即可.解:連A1B、BC1、A1C1,則A1B=BC1=A1C1,且MN∥A1B、PQ∥BC1,所以異面直線MN與PQ所成的角等于60°,故選B.
          點(diǎn)評(píng):本題主要考查了異面直線及其所成的角,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          對(duì)于平面與共面的直線m,n,下列命題為真命題的是  (    )
          A.若m,n與所成的角相等,則m//n B.若m//,n//,則m//n
          C.若,,則//D.若m,n//,則m//n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知四棱錐P-ABCD的直觀圖(如圖(1))及左視圖(如圖(2)),底面ABCD是邊長(zhǎng)為2的正方形,平面PAB⊥平面ABCD,PA=PB。

          (1)求證:AD⊥PB;
          (2)求異面直線PD與AB所成角的余弦值;
          (3)求平面PAB與平面PCD所成銳二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖,在三棱錐中,,且,平面,過(guò)作截面分別交,且二面角的大小為,則截面面積的最小值為      .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知斜三棱柱,側(cè)面與底面垂直,∠,,且,.

          (1)試判斷與平面是否垂直,并說(shuō)明理由;
          (2)求側(cè)面與底面所成銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖四棱錐E—ABCD中,底面ABCD是平行四邊形!螦BC=45°,BE=BC=   EA=EC=6,M為EC中點(diǎn),平面BCE⊥平面ACE,AE⊥EB

          (I)求證:AE⊥BC (II)求四棱錐E—ABCD體積

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O為AB的中點(diǎn).

          (1)求證:OC⊥DF;
          (2)求平面DEF與平面ABC相交所成銳二面角的大。
          (3)求多面體ABC—FDE的體積V.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,若G,E,F(xiàn)分別是ABC的邊AB,BC,CA的中點(diǎn),O是△ABC的重心,則(    )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在正方體中,是棱的中點(diǎn).

          (Ⅰ)證明:平面;
          (Ⅱ)證明: .

          查看答案和解析>>

          同步練習(xí)冊(cè)答案