日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】10四面體ABCD及其三視圖如圖所示,平行于棱ADBC的平面分別交四面體的棱AB,BD,DC,CA于點E,F,G,H

          1求四面體ABCD的體積

          2證明四邊形EFGH是矩形

          【答案】1;2詳見解析

          【解析】

          試題分析:(證明AD平面BDC,即可求四面體ABCD的體積;(證明四邊形EFGH是平行四邊形,EFHG即可證明四邊形EFGH是矩形

          試題解析1由該四面體的三視圖可知,

          BDDCBDAD,ADDC

          BD=DC=2,AD=1,

          AD平面BDC

          四面體體積

          V=××2×2×1=

          2證明BC平面EFGH,

          平面EFGH∩平面BDC=FG

          平面EFGH∩平面ABC=EH,

          BCFGBCEHFGEH

          同理EFAD,HGAD,

          EFHG

          四邊形EFGH是平行四邊形

          AD平面BDC,

          ADBCEFFG

          四邊形EFGH是矩形

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】直線l過點(1,0)且被兩條平行直線l1:3x+y-6=0和l2:3x+y+3=0所截得的線段長為,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ均為正的常數(shù))的最小正周期為π,當x= 時,函數(shù)f(x)取得最小值,則下列結(jié)論正確的是(
          A.f(2)<f(﹣2)<f(0)
          B.f(0)<f(2)<f(﹣2)
          C.f(﹣2)<f(0)<f(2)
          D.f(2)<f(0)<f(﹣2)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=lnx﹣mx+m,m∈R.
          (1)已知函數(shù)f(x)在點(l,f(1))處與x軸相切,求實數(shù)m的值;
          (2)求函數(shù)f(x)的單調(diào)區(qū)間;
          (3)在(1)的結(jié)論下,對于任意的0<a<b,證明: ﹣1.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】定義max{a,b}表示實數(shù)a,b中的較大的數(shù).已知數(shù)列{an}滿足a1=a(a>0),a2=1,an+2= (n∈N),若a2015=4a,記數(shù)列{an}的前n項和為Sn , 則S2015的值為

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,四棱柱ABCDA1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD,.

          1)證明: A1BD // 平面CD1B1;

          2)求三棱柱ABDA1B1D1的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓上頂點為,焦點為,是橢圓上異于點的不同的兩點,且滿足直線與直線斜率之積為.

          1為橢圓上不同于長軸端點的任意一點面積的最大值;

          2)試判斷直線是否過定點;若是,求出定點坐標若否,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)函數(shù)

          (1)當時,求的定義域;

          (2)若函數(shù)的定義域為非空集合,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的離心率為,短軸長為.

          (1)求橢圓的方程;

          (2)設(shè) 是橢圓上關(guān)于軸對稱的任意兩個不同的點,連接交橢圓于另一點,證明直線軸相交于定點;

          (3)在(2)的條件下,過點的直線與橢圓交于, 兩點,求的取值范圍.

          查看答案和解析>>

          同步練習冊答案