日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分14分)

          某公司為了加大產(chǎn)品的宣傳力度,準(zhǔn)備立一塊廣告牌,在其背面制作一個形如△ABC的支架,要求∠ACB=60°,BC的長度大于1米,且ACAB長0.5米.為節(jié)省材料,要求AC的長度越短越好,求AC的最短長度,且當(dāng)AC最短時,BC的長度為多少米?

           

          解:設(shè)BCx米(x>1),ACy米,則ABy-.

          在△ABC中,由余弦定理,得(y-)2y2x2-2xycos60°.

          所以y=(x>1).

          法一:y==(x-1)++2≥2+.

          當(dāng)且僅當(dāng)x-1=,即x=1+時,y有最小值2+.

          法二: y′==.

          y′=0得x=1+.因?yàn)楫?dāng)1<x<1+時,y′<0;當(dāng)x>1+時,y′>0,

          所以當(dāng)x=1+時,y有最小值2+.

          答:AC的最短長度為2+米,此時BC的長度為(1+)米.……………14分

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分14分
          A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
          π
          3
          (ρ∈R ),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
          x=2cosα
          y=1+cos2α
          (α 參數(shù)).求直線l 和曲線C的交點(diǎn)P的直角坐標(biāo).
          B.選修4-5:不等式選講
          設(shè)實(shí)數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABEAEEBBC=2,上的點(diǎn),且BF⊥平面ACE

          (1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

          (本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

          (Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值

          (Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

          (本題滿分14分)

          已知點(diǎn)是⊙上的任意一點(diǎn),過垂直軸于,動點(diǎn)滿足。

          (1)求動點(diǎn)的軌跡方程; 

          (2)已知點(diǎn),在動點(diǎn)的軌跡上是否存在兩個不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請說明理由。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

          (本題滿分14分)已知函數(shù).

          (1)求函數(shù)的定義域;

          (2)判斷的奇偶性;

          (3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

          ;如果沒有,請說明理由?(注:區(qū)間的長度為).

           

          查看答案和解析>>

          同步練習(xí)冊答案