日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】將函數(shù)的圖象向左平移個單位,再將所得圖象上每個點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到的圖象,則的可能取值為( )

          A. B.

          C. D.

          【答案】A

          【解析】分析:首先求得函數(shù)的解析式,然后結(jié)合函數(shù)平移變換和伸縮變換的規(guī)律考查所給的選項即可求得最終結(jié)果.

          詳解:函數(shù)的解析式:,

          逐一考查所給的選項:

          A.,向左平移個單位,

          得到函數(shù)的解析式,

          再將所得圖象上每個點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,

          得到函數(shù)的解析式,

          ,符合題意;

          B.,向左平移個單位,

          得到函數(shù)的解析式,

          再將所得圖象上每個點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,

          得到函數(shù)的解析式,

          不合題意;

          C.向左平移個單位,

          得到函數(shù)的解析式,

          再將所得圖象上每個點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,

          得到函數(shù)的解析式,

          ,不合題意;

          D.,向左平移個單位,

          得到函數(shù)的解析式,

          再將所得圖象上每個點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,

          得到函數(shù)的解析式,

          ,不合題意;

          本題選擇A選項.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

          (1)求直線的普通方程與圓的直角坐標(biāo)方程;

          (2)設(shè)動點在圓上,動線段的中點的軌跡為,與直線交點為,且直角坐標(biāo)系中,點的橫坐標(biāo)大于點的橫坐標(biāo),求點的直角坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐中, , 的中點, 的中點,且為正三角形.

          (1)求證: 平面

          (2)若,三棱錐的體積為1,求點到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點分別為,圓經(jīng)過橢圓的兩個焦點和兩個頂點,點在橢圓上,且,.

          (Ⅰ)求橢圓的方程和點的坐標(biāo);

          (Ⅱ)過點的直線與圓相交于兩點,過點垂直的直線與橢圓相交于另一點,求的面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.

          (I)請將兩家公司各一名推銷員的日工資(單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;

          (II)從兩家公司各隨機選取一名推銷員,對他們過去100天的銷售情況進(jìn)行統(tǒng)計,得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為(單位: 元),將該頻率視為概率,請回答下面問題:

          某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學(xué)的統(tǒng)計學(xué)知識為他作出選擇,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,,分別是其左、右焦點,且過點.

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)求的外接圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關(guān)聯(lián)如下:

          上年度出險次數(shù)

          0

          1

          2

          3

          4

          ≥5

          保費

          0.85a

          a

          1.25a

          1.5a

          1.75a

          2a

          隨機調(diào)查了該險種的200名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計表:

          出險次數(shù)

          0

          1

          2

          3

          4

          ≥5

          頻數(shù)

          60

          50

          30

          30

          20

          10

          (1)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”,求P(A)的估計值;

          (2)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值;

          (3)求續(xù)保人本年度平均保費的估計值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中語文、數(shù)學(xué)、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門參加考試(63),每科目滿分100.為了應(yīng)對新高考,某高中從高一年級1000名學(xué)生(其中男生550人,女生450人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查.

          1)已知抽取的名學(xué)生中含男生55人,求的值;

          2)學(xué)校計劃在高一上學(xué)期開設(shè)選修中的“物理”和“地理”兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表. 請將列聯(lián)表補充完整,并判斷是否有 99%的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

          3)在抽取到的女生中按(2)中的選課情況進(jìn)行分層抽樣,從中抽出9名女生,再從這9名女生中抽取4人,設(shè)這4人中選擇“地理”的人數(shù)為,求的分布列及期望.

          附:,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定義域為的函數(shù)(常數(shù)).

          (1)若,求函數(shù)的單調(diào)區(qū)間;

          (2)若恒成立,求實數(shù)的最大整數(shù)值.

          查看答案和解析>>

          同步練習(xí)冊答案