已知的導(dǎo)函數(shù)
,且
,設(shè)
,
且.
(Ⅰ)討論在區(qū)間
上的單調(diào)性;
(Ⅱ)求證:;
(Ⅲ)求證:.
減
,
和
增
;(2)(3)詳見解析
【解析】
試題分析:(Ⅰ)利用 的導(dǎo)函數(shù)找到原函數(shù)即可研究
的單調(diào)性, (Ⅱ)把證明不等式
轉(zhuǎn)化為證明不等式
,然后通過求導(dǎo)研究函數(shù)的值域,
(Ⅲ)難點(diǎn)①轉(zhuǎn)化
,②注意運(yùn)用第(Ⅱ)問產(chǎn)生的新結(jié)論
.導(dǎo)致
③放縮
后進(jìn)行數(shù)列求和.
試題解析:(Ⅰ)由 且
得
.
定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092700052759286537/SYS201309270006123985154893_DA.files/image015.png">
令 ,得
或
當(dāng) 時(shí),由
,得
;由
,得
,或
在
上單調(diào)遞減,在
和
上單調(diào)遞增.
當(dāng) 時(shí), 由
,得
;由
,得
,
在
上單調(diào)遞減,在
上單調(diào)遞增.
(Ⅱ)設(shè) ,令
,得
,
,得
,
在
上單調(diào)遞減,在
上單調(diào)遞增.
在
處有極大值,即最大值0,
同理可證
,
即
(Ⅲ)由(2)知,
又
即當(dāng)
時(shí)取等號(hào).
考點(diǎn):導(dǎo)數(shù)運(yùn)算及運(yùn)用導(dǎo)數(shù)研究函數(shù)的性質(zhì),數(shù)列求和及不等式中的放縮法的運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
f′(x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
2 |
2 |
2 |
1 |
5 |
1 |
5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com