日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)橢圓的左右焦點為,,上的動點,則下列結(jié)論正確的是(

          A.B.離心率

          C.面積的最大值為D.以線段為直徑的圓與直線相切

          【答案】AD

          【解析】

          根據(jù)橢圓的定義判斷A選項正確性,根據(jù)橢圓離心率判斷B選項正確性,求得面積的最大值來判斷C選項的正確性,求得圓心到直線的距離,與半徑比較,由此判斷D選項的正確性.

          對于A選項,由橢圓的定義可知,所以A選項正確.

          對于B選項,依題意,所以,所以B選項不正確.

          對于C選項,,當(dāng)為橢圓短軸頂點時,的面積取得最大值為,所以C選項錯誤.

          對于D選項,線段為直徑的圓圓心為,半徑為,圓心到直線的距離為,也即圓心到直線的距離等于半徑,所以以線段為直徑的圓與直線相切,所以D選項正確.

          綜上所述,正確的為AD.

          故選:AD

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

          在平面直角坐標(biāo)系中,以為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(t為參數(shù)).直線與曲線分別交于兩點.

          (1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

          (2)若點的極坐標(biāo)為,,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點分別為,過的直線與橢圓相交于、兩點.

          (1)求 的周長;

          (2)設(shè)點為橢圓的上頂點,點在第一象限,點在線段上.若,求點的橫坐標(biāo);

          (3)設(shè)直線不平行于坐標(biāo)軸,點為點關(guān)于軸的對稱點,直線軸交于點.求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方體中,點是線段上的動點,則下列說法錯誤的是( )

          A. 當(dāng)點移動至中點時,直線與平面所成角最大且為

          B. 無論點上怎么移動,都有

          C. 當(dāng)點移動至中點時,才有相交于一點,記為點,且

          D. 無論點上怎么移動,異面直線所成角都不可能是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)當(dāng)a=0時,求函數(shù)f(x)在(1,f(1))處的切線方程;

          (2)令求函數(shù)的極值.

          (3)若,正實數(shù)滿足,

          證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知雙曲線的兩個焦點為,并且經(jīng)過點.

          1)求雙曲線的方程;

          2)過點的直線與雙曲線有且僅有一個公共點,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,,,的面積為

          1)求橢圓的方程;

          2)過右焦點作與軸不重合的直線交橢圓,兩點,連接,分別交直線于,,兩點,若直線,的斜率分別為,,試問:是否為定值?若是,求出該定值,若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)R.

          (1)討論的單調(diào)性;

          (2)若有兩個零點,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,動點到點的距離和它到直線的距離相等,記點的軌跡為.

          1)求的方程;

          2)設(shè)點在曲線上,軸上一點(在點右側(cè))滿足,若平行于的直線與曲線相切于點,試判斷直線是否過點?并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案