日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 探究函數(shù)f(x)=x+,x∈(0,+∞)的最小值,并確定取得最小值時(shí)x的值.列表如下:

          x

          0.5

          1

          1.5

          1.7

          1.9

          2

          2.1

          2.2

          2.3

          3

          4

          5

          7

          y

          8.5

          5

          4.17

          4.05

          4.005

          4

          4.005

          4.02

          4.04

          4.3

          5

          5.8

          7.57

          請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問(wèn)題.

          函數(shù)f(x)=x+(x>0)在區(qū)間(0,2)上遞減;

          (1)函數(shù)f(x)=x+(x>0)在區(qū)間                  上遞增.

          當(dāng)x=                 時(shí),y最小=                         .

          (2)證明:函數(shù)f(x)=x+在區(qū)間(0,2)上遞減.

          (3)思考:函數(shù)f(x)=x+(x<0)有最值嗎?如果有,那么它是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

           

          【答案】

          (1)(2,+∞);2;4(2)證明如下(3)當(dāng)x=-2時(shí),有最大值-4

          【解析】

          試題分析:(1)(2,+∞);2;4 

          (2)任取∈(0, 2)且于是,f()-f(

          =(x)-(x2)  =

          (1)∵ x, x∈(0, 2) 且 x<x

          ∴ x-x<0;xx-4<0; xx>0

          ∴(1)式>0 即f(x)-f(x)>0,f(x)>f(x

          ∴f(x)在區(qū)間(0, 2)遞減.  10分

          (3)當(dāng)x=-2時(shí),有最大值-4提示:f(x)在(-∞,0)∪(0, ∞)

          為奇函數(shù).圖象關(guān)于原點(diǎn)對(duì)稱(chēng).

          考點(diǎn):函數(shù)的單調(diào)性;函數(shù)的最值

          點(diǎn)評(píng):證明函數(shù)在區(qū)間上為增(減)函數(shù)的方法是:令,若

          ),則函數(shù)為增(減)函數(shù)。

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          探究函數(shù)f(x)=x+
          4
          x
          ,x∈(0,+∞)
          的最小值,并確定取得最小值時(shí)x的值.列表如下:
          x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
          y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 5.8 7.57
          請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問(wèn)題.
          (1)函數(shù)f(x)=x+
          4
          x
          (x>0)
          在區(qū)間(0,2)上遞減,函數(shù)f(x)=x+
          4
          x
          (x>0)
          在區(qū)間
           
          上遞增;
          (2)函數(shù)f(x)=x+
          4
          x
          (x>0)
          ,當(dāng)x=
           
          時(shí),y最小=
           
          ;
          (3)函數(shù)f(x)=x+
          4
          x
          (x<0)
          時(shí),有最值嗎?是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          探究函數(shù)f(x)=x+
          4
          x
            x∈(0,+∞)的最小值,并確定相應(yīng)的x的值,列表如下,請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成下列問(wèn)題:
          x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
          y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
          (1)若當(dāng)x>0時(shí),函數(shù)f(x)=x+
          4
          x
          時(shí),在區(qū)間(0,2)上遞減,則在
           
          上遞增;
          (2)當(dāng)x=
           
          時(shí),f(x)=x+
          4
          x
          ,x>0的最小值為
           

          (3)試用定義證明f(x)=x+
          4
          x
          ,x>0在區(qū)間上(0,2)遞減;
          (4)函數(shù)f(x)=x+
          4
          x
          ,x<0有最值嗎?是最大值還是最小值?此時(shí)x為何值?
          解題說(shuō)明:(1)(2)兩題的結(jié)果直接填寫(xiě)在答題卷中橫線上;(4)題直接回答,不需證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          觀察下列表格,探究函數(shù)f(x)=x+
          4
          x
          ,x∈(0,+∞)
          的性質(zhì),
          x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
          y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
          (1)請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問(wèn)題.
          函數(shù)f(x)=x+
          4
          x
          (x>0)
          在區(qū)間(0,2)上遞減;
          函數(shù)f(x)=x+
          4
          x
          (x>0)
          在區(qū)間
          (2,+∞)
          (2,+∞)
          上遞增.
          當(dāng)x=
          2
          2
          時(shí),y最小=
          4
          4

          (2)證明:函數(shù)f(x)=x+
          4
          x
          在區(qū)間(0,2)遞減.
          (3)函數(shù)f(x)=x+
          4
          x
          (x<0)
          時(shí),有最值嗎?是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案