日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知等比數(shù)列滿足,,

          求數(shù)列的通項公式;

          設(shè),求的前n項和為

          【答案】12

          【解析】

          試題分析:(1)根據(jù)等比數(shù)列的首項和公比求通項公式;一般轉(zhuǎn)化為首項和公比列方程求解,注意題中限制條件;(2)先求{}的通項公式然后再求和,除此外還會有觀察數(shù)列的特點形式,看使用什么方法求和.使用裂項法求和時,要注意正負(fù)項相消時消去了哪些項,保留了哪些項,切不可漏寫未被消去的項,未被消去的項有前后對稱的特點,實質(zhì)上造成正負(fù)相消是此法的根源和目的.3)在做題時注意觀察式子特點選擇有關(guān)公式和性質(zhì)進行化簡,這樣給做題帶來方便,掌握常見求和方法,如分組轉(zhuǎn)化求和,裂項法,錯位相減.

          試題解析:1)設(shè)數(shù)列{}的首項為,公比為,所以,所以,

          所以

          2)因為,所以數(shù)列{}的前項和.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓圓心坐標(biāo)為點為坐標(biāo)原點,軸、軸被圓截得的弦分別為、.

          (1)證明:的面積為定值;

          (2)設(shè)直線與圓交于兩點,若,求圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,雙曲線 =1(a>0,b>0)的右支與焦點為F的拋物線x2=2py(p>0)交于A,B兩點,若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知四棱錐的底面是菱形,底面,上的任意一點

          求證:平面平面

          設(shè),求點到平面的距離

          的條件下,若,求與平面所成角的正切值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學(xué)問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20 , 接下來的兩項是20 , 21 , 再接下來的三項是20 , 21 , 22 , 依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項和為2的整數(shù)冪.那么該款軟件的激活碼是(  )
          A.440
          B.330
          C.220
          D.110

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校高二年級共有800名學(xué)生參加2019年全國高中數(shù)學(xué)聯(lián)賽江蘇賽區(qū)初賽,為了解學(xué)生成績,現(xiàn)隨機抽取40名學(xué)生的成績(單位:分),并列成如下表所示的頻數(shù)分布表:

          分組

          頻數(shù)

          ⑴試估計該年級成績不低于90分的學(xué)生人數(shù);

          ⑵成績在的5名學(xué)生中有3名男生,2名女生,現(xiàn)從中選出2名學(xué)生參加訪談,求恰好選中一名男生一名女生的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè){an}和{bn}是兩個等差數(shù)列,記cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs這s個數(shù)中最大的數(shù).(13分)
          (1)若an=n,bn=2n﹣1,求c1 , c2 , c3的值,并證明{cn}是等差數(shù)列;
          (2)證明:或者對任意正數(shù)M,存在正整數(shù)m,當(dāng)n≥m時, >M;或者存在正整數(shù)m,使得cm , cm+1 , cm+2 , …是等差數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,角α與角β均以O(shè)x為始邊,它們的終邊關(guān)于y軸對稱,若sinα= ,則cos(α﹣β)=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)a∈Z,已知定義在R上的函數(shù)f(x)=2x4+3x3﹣3x2﹣6x+a在區(qū)間(1,2)內(nèi)有一個零點x0 , g(x)為f(x)的導(dǎo)函數(shù).
          (Ⅰ)求g(x)的單調(diào)區(qū)間;
          (Ⅱ)設(shè)m∈[1,x0)∪(x0 , 2],函數(shù)h(x)=g(x)(m﹣x0)﹣f(m),求證:h(m)h(x0)<0;
          (Ⅲ)求證:存在大于0的常數(shù)A,使得對于任意的正整數(shù)p,q,且 ∈[1,x0)∪(x0 , 2],滿足| ﹣x0|≥

          查看答案和解析>>

          同步練習(xí)冊答案