日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知直線l1∥l2,點A是l1,l2上兩直線之間的動點,且到l1距離為4,到l2距離為3,若
          AC
          AB
          =0,AC
          與直線l2交于點C,則△ABC面積的最小值為(  )
          分析:過A作直線l1的垂線交點分別為E和F,由l1∥l2,得到直線EF也與l2垂直,從而得到AE及AF的值,由兩向量的數(shù)量積積為0得到兩向量垂直,即AB與AC垂直,設(shè)∠FAC=θ,則有∠EAB=
          π
          2
          -θ,分別在直角三角形AEB和AFC中,由AE,AF,及設(shè)出的角度利用余弦函數(shù)定義表示出AB積AC,由三角形ABC為直角三角形,用直角邊AB與AC的乘積表示出三角形的面積,利用誘導(dǎo)公式及二倍角的正弦函數(shù)公式化簡后,根據(jù)正弦函數(shù)的值域即可得到面積的最小值.
          解答:
          解:過A作l1的垂線,與l1,l2分別交于點E和F,又l1∥l2,故直線EF也與l2垂直,
          則根據(jù)題意得AE=4,AF=3,
          AC
          AB
          =0
          ,∴AB⊥AC,即∠BAC=
          π
          2
          ,
          令∠FAC=θ,則∠EAB=
          π
          2
          -θ,
          ∴cosθ=
          3
          AC
          ,則AC=
          3
          cosθ
          ,
          同理可得AB=
          4
          cos(
          π
          2
          -θ)

          ∴S△ABC=
          1
          2
          AB•AC=
          6
          cosθcos(
          π
          2
          -θ)
          =
          12
          2sinθcosθ
          =
          12
          sin2θ
          ≥12,
          則△ABC的面積最小值為12.
          故選C
          點評:此題考查了平面向量數(shù)量積的運算,銳角三角函數(shù)定義,正弦函數(shù)的定義域及值域,誘導(dǎo)公式及二倍角的正弦函數(shù)公式,利用了數(shù)形結(jié)合的思想,過A作出已知直線的垂線EF是解本題的關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知直線l1:4x+y=0,直線l2:x+y-1=0以及l(fā)2上一點P(3,-2).
          (Ⅰ)求圓心M在l1上且與直線l2相切于點P的圓⊙的方程.
          (Ⅱ)在(Ⅰ)的條件下;若直線l1分別與直線l2、圓⊙依次相交于A、B、C三點,利用代數(shù)法驗證:|AP|2=|AB|•|AC|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知直線l1:y=2x+m(m<0)與拋物線C1:y=ax2(a>0)和圓C2:x2+(y+1)2=5都相切,F(xiàn)是C1的焦點.
          (1)求m與a的值;
          (2)設(shè)A是C1上的一動點,以A為切點作拋物線C1的切線l,直線l交y軸于點B,以FA,F(xiàn)B為鄰邊作平行四邊形FAMB,證明:點M在一條定直線上;
          (3)在(2)的條件下,記點M所在的定直線為l2,直線l2與y軸交點為N,連接MF交拋物線C1于P,Q兩點,求△NPQ的面積S的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知直線l1:4x+y=0,直線l2:x+y-1=0以及l(fā)2上一點P(3,-2).求有圓心在l1上且與直線l2相切于點P的圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知直線l1∥l2,點A是l1,l2之間的定點,點A到l1,l2之間的距離分別為3和2,點B是l2上的一動點,作AC⊥AB,且AC與l1交于點C,則△ABC的面積的最小值為
          6
          6

          查看答案和解析>>

          同步練習冊答案