日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=x2-x.
          (1)計算f(0),f(-1);
          (2)當(dāng)x<0時,求f(x)的解析式.
          分析:(1))由題意可得:f(-0)=-f(0),所以f(0)=0,同理可得:f(-1)=-f(1)=-(12-1)=0.
          (2)由題意設(shè)x>0利用已知的解析式求出f(-x)=x2+2x,再由f(x)=-f(-x),求出x>0時的解析式.
          解答:解:(1)∵f(x)是R上的奇函數(shù)
          ∴f(-0)=-f(0),
          ∴f(0)=0,
          因?yàn)楹瘮?shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=x2-x,
          所以f(-1)=-f(1)=-(12-1)=0.
          (2)當(dāng)x<0時,則-x>0,
          因?yàn)楫?dāng)x>0時,f(x)=x2-x,
          所以f(-x)=(-x)2-(-x)=x2+x
          又∵函數(shù)f(x)是定義在R上的奇函數(shù),即f(-x)=f(x),
          ∴f(x)=-x2-x.
          ∴當(dāng)x<0時,f(x)=-x2-x.
          點(diǎn)評:本題的考點(diǎn)是利用函數(shù)的奇偶性求函數(shù)的解析式(即利用f(x)和f(-x)的關(guān)系),把x的范圍轉(zhuǎn)化到已知的范圍內(nèi)求對應(yīng)的解析式,注意兩點(diǎn):f(0)的情況,要用分段函數(shù)表示.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          2x+2-x
          2
          ,g(x)=
          2x-2-x
          2
          ,
          (1)計算:[f(1)]2-[g(1)]2;
          (2)證明:[f(x)]2-[g(x)]2是定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=x+
          a
          x
          的定義域?yàn)椋?,+∞),且f(2)=2+
          2
          2
          .設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
          (1)求a的值.
          (2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
          (3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1,y1),N(x2,y2)
          是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
          1
          2
          的點(diǎn)P滿足2
          OP
          =
          OM
          +
          ON
          (O為坐標(biāo)原點(diǎn)).
          (Ⅰ)求證:y1+y2為定值;
          (Ⅱ)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )
          ,其中n∈N*,且n≥2,求Sn;
          (Ⅲ)已知an=
          1
          6
          ,                          n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          ,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點(diǎn),且x1+x2=1.
          (1)求證:y1+y2為定值;
          (2)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )(n∈N*,N≥2),求Sn;
          (3)在(2)的條件下,若an=
          1
          6
           ,n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          (n∈N*),Tn為數(shù)列{an}的前n項和.求Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=sin(2x-
          π
          6
          ),g(x)=sin(2x+
          π
          3
          ),直線y=m與兩個相鄰函數(shù)的交點(diǎn)為A,B,若m變化時,AB的長度是一個定值,則AB的值是(  )

          查看答案和解析>>

          同步練習(xí)冊答案