日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知每項(xiàng)均是正整數(shù)的數(shù)列a1,a2,a3,…a100,其中等于i的項(xiàng)有ki個(gè)(i=1,2,3…),設(shè)bj=k1+k2+…kj(j=1,2,3…),
          g(m)=b1+b2+…bm-100m(m=1,2,3…).
          (Ⅰ)設(shè)數(shù)列k1=40,k2=30,k3=20,k4=10,k5=…=k100=0,求g(1),g(2),g(3),g(4);
          (II) 若 a1,a2,a3,…,a100中最大的項(xiàng)為50,比較g(m),g(m+1)的大。
          (Ⅲ)若a1+a2+…a100=200,求函數(shù)g(m)的最小值.
          【答案】分析:(I)因?yàn)閿?shù)列k1,k2,k3,k4的值已知,所以b1,b2,b3,b4由公式bj=k1+k2+…kj(j=1,2,3…)求得,所以g(1),g(2),g(3),g(4)由公式g(m)=b1+b2+…bm-100m(m=1,2,3…)求得;
          (II)由題意,g(m)=b1+b2+…bm-100m,g(m+1)=b1+b2+…bm+bm+1-100(m+1),作差比較,得g(m+1)-g(m)=bm+1-100,由bj的含義,知bm+1≤100,故得g(m+1),g(m)的大小,又a1,a2,a3,…,a100中最大的項(xiàng)為50,知當(dāng)m≥50時(shí)bm=100,所以,當(dāng)1<m<49時(shí),有g(shù)(m)>g(m+1);當(dāng)m≥49時(shí),有g(shù)(m)=g(m+1);
          (III)可設(shè){a1,a2,…a100}中的最大值為M,則由(II)知,g(m)的最小值為g(M),計(jì)算出g(M)的值即為g(m)最小值.
          解答:解:(I)因?yàn)閿?shù)列k1=40,k2=30,k3=20,k4=10,所以b1=40,b2=70,b3=90,b4=100,
          所以:g(1)=-60,g(2)=-90,g(3)=-100,g(4)=-100;
          (II)一方面,g(m+1)-g(m)=bm+1-100,根據(jù)bj的含義,知bm+1≤100,
          故g(m+1)-g(m)≤0,即g(m)≥g(m+1),①
          當(dāng)且僅當(dāng)bm+1=100時(shí)取等號(hào).
          因?yàn)閍1,a2,a3,…,a100中最大的項(xiàng)為50,所以當(dāng)m≥50時(shí)必有bm=100,
          所以g(1)>g(2)>…>g(49)=g(50)=g(51)=…
          即當(dāng)1<m<49時(shí),有g(shù)(m)>g(m+1);當(dāng)m≥49時(shí),有g(shù)(m)=g(m+1);
          (III)設(shè)M為{a1,a2,…a100}中的最大值.
          由(II)可以知道,g(m)的最小值為g(M).下面計(jì)算g(M)的值.
          g(M)=b1+b2+b3+…+bM-100M
          =(b1-100)+(b2-100)+(b3-100)+…+(bM-1-100)
          =(-k2-k3-…-kM)+(-k3-k4-…-kM)+(-k4-k5…-kM)+…+(-kM
          =-[k2+2k3+…+(M-1)kM]
          =-(k1+2k2+3k3+…+MkM)+(k1+k2+…+kM
          =-(a1+a2+a3+…+a100)+bM
          =-(a1+a2+a3+…+a100)+100
          ∵a1+a2+a3+…+a100=200,∴g(M)=-100,g(m)最小值為-100.
          點(diǎn)評(píng):本題考查了數(shù)列知識(shí)的綜合應(yīng)用,解題時(shí)要認(rèn)真審題,弄清題目中所給的條件是什么,細(xì)心解答,這樣才不會(huì)出現(xiàn)錯(cuò)誤.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          20、已知每項(xiàng)均是正整數(shù)的數(shù)列a1,a2,a3,…a100,其中等于i的項(xiàng)有ki個(gè)(i=1,2,3…),設(shè)bj=k1+k2+…kj(j=1,2,3…),
          g(m)=b1+b2+…bm-100m(m=1,2,3…).
          (Ⅰ)設(shè)數(shù)列k1=40,k2=30,k3=20,k4=10,k5=…=k100=0,求g(1),g(2),g(3),g(4);
          (II) 若 a1,a2,a3,…,a100中最大的項(xiàng)為50,比較g(m),g(m+1)的大。
          (Ⅲ)若a1+a2+…a100=200,求函數(shù)g(m)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知每項(xiàng)均是正整數(shù)的數(shù)列A:a1,a2,a3,…,an,其中等于i的項(xiàng)有ki個(gè)(i=1,2,3…),設(shè)bj=k1+k2+…+kj(j=1,2,3…),g(m)=b1+b2+…+bm-nm(m=1,2,3…).
          (Ⅰ)設(shè)數(shù)列A:1,2,1,4,求g(1),g(2),g(3),g(4),g(5);
          (Ⅱ)若數(shù)列A滿足a1+a2+…+an-n=100,求函數(shù)g(m)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•昌平區(qū)一模)已知每項(xiàng)均是正整數(shù)的數(shù)列a1,a2,a3,…a100,其中等于i的項(xiàng)有ki個(gè)(i=1,2,3…),設(shè)bj=k1+k2+…+kj(j=1,2,3…),g(m)=b1+b2+…+bm-100m(m=1,2,3…).
          (Ⅰ)設(shè)數(shù)列k1=40,k2=30,k3=20,k4=10,k5=…=k100=0,
          ①求g(1),g(2),g(3),g(4);
          ②求a1+a2+a3+…+a100的值;
          (Ⅱ)若a1,a2,a3,…a100中最大的項(xiàng)為50,比較g(m),g(m+1)的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011屆北京市海淀區(qū)高三下學(xué)期期中考試數(shù)學(xué)理卷 題型:解答題

          (本小題共13分)
          已知每項(xiàng)均是正整數(shù)的數(shù)列,其中等于的項(xiàng)有個(gè),
          設(shè) .
          (Ⅰ)設(shè)數(shù)列,求;
          (Ⅱ)若數(shù)列滿足,求函數(shù)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市海淀區(qū)高三下學(xué)期期中考試數(shù)學(xué)理卷 題型:解答題

          (本小題共13分)

          已知每項(xiàng)均是正整數(shù)的數(shù)列,其中等于的項(xiàng)有個(gè),

          設(shè) , .

          (Ⅰ)設(shè)數(shù)列,求;

          (Ⅱ)若數(shù)列滿足,求函數(shù)的最小值.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案