日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•浦東新區(qū)一模)如圖所示,在平面直角坐標(biāo)系xOy上放置一個(gè)邊長(zhǎng)為1的正方形PABC,此正方形PABC沿x軸滾動(dòng)(向左或向右均可),滾動(dòng)開始時(shí),點(diǎn)P位于原點(diǎn)處,設(shè)頂點(diǎn)P(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系是y=f(x),x∈R,該函數(shù)相鄰兩個(gè)零點(diǎn)之間的距離為m.
          (1)寫出m的值并求出當(dāng)0≤x≤m時(shí),點(diǎn)P運(yùn)動(dòng)路徑的長(zhǎng)度l;
          (2)寫出函數(shù)f(x),x∈[4k-2,4k+2],k∈Z的表達(dá)式;研究該函數(shù)的性質(zhì)并填寫下面表格:
          函數(shù)性質(zhì) 結(jié)  論
          奇偶性
          偶函數(shù)
          偶函數(shù)
          單調(diào)性 遞增區(qū)間
          [4k,4k+2],k∈z
          [4k,4k+2],k∈z
          遞減區(qū)間
          [4k-2,4k],k∈z
          [4k-2,4k],k∈z
          零點(diǎn)
          x=4k,k∈z
          x=4k,k∈z
          (3)試討論方程f(x)=a|x|在區(qū)間[-8,8]上根的個(gè)數(shù)及相應(yīng)實(shí)數(shù)a的取值范圍.
          分析:(1)m即正方形的周長(zhǎng),l由3段
          1
          4
          圓弧構(gòu)成,其中2段弧所在圓的半徑等于1,1段弧所在圓的半徑等于
          2
          ,從而
          求得l的值.
          (2)用分段函數(shù)表示函數(shù)f(x)的解析式,由此求出遞增區(qū)間和遞減區(qū)間,及函數(shù)的零點(diǎn).
          (3)易知直線y=ax恒過原點(diǎn),函數(shù)y=f(x),x∈[-8,8]的圖象關(guān)于y軸對(duì)稱,分類討論直線y=ax在每一段上
          與y=f(x)的交點(diǎn)的個(gè)數(shù),綜合可得結(jié)論.
          解答:解:(1)m即正方形的周長(zhǎng),∴m=4,…(2分)
          l由3段
          1
          4
          圓弧構(gòu)成,其中2段弧所在圓的半徑等于1,1段弧所在圓的半徑等于
          2
          ,
          故l=2[
          1
          4
          ×2π×1]+
          1
          4
          ×2π×
          2
          =(1+
          2
          2
          )π.…(4分)
          (2)函數(shù)f(x)=
          2-(x-4k+2)2
           , 4k-2≤x≤4k-1
          1-(x-4k+1)2
          , 4k-1≤x≤4k
          1-(x-4k-1)2
          , 4k≤x≤4k+1
          2-(x-4k-2)2
          , 4k+1≤x≤4k+2
          ,k∈z.…(7分)
          函數(shù)性質(zhì) 結(jié)   論
          奇偶性 偶函數(shù)
          單調(diào)性 遞增區(qū)間 [4k,4k+2],k∈z
          遞減區(qū)間 [4k-2,4k],k∈z
          零點(diǎn) x=4k,k∈z
          …(10分)
          (3)f(x)=a|x|在區(qū)間[-8,8]刪的根的個(gè)數(shù)即為函數(shù)f(x)的圖象和直線y=a|x|的交點(diǎn)個(gè)數(shù),
          (i)易知直線y=ax恒過原點(diǎn);
          當(dāng)直線y=ax過點(diǎn)(1,1)時(shí),a=1,此時(shí)點(diǎn)(2,0)到直線y=x的距離為
          2
          ,
          直線y=x與曲線 y=
          2-(x-2)2
          ,x∈[1,3]相切.
          當(dāng)x≥3時(shí),y=x恒在曲線y=f(x)之上.
          (ii)當(dāng)直線y=ax與曲線 y=
          2-(x-6)2
          ,x∈[5,7]相切時(shí),由點(diǎn)(6,0)到直線y=ax
          的距離為
          2
          ,a=
          1
          17
          ,此時(shí)點(diǎn)(5,0)到直線 y=
          1
          17
          x的距離為
          5
          18
          ,
          直線y=
          1
          17
          x與曲線y=
          1-(x-5)2
          ,x∈[4,5]相離.
          (iii)當(dāng)直線y=ax與曲線 y=
          1-(x-5)2
          ,x∈[4,5]相切時(shí),由點(diǎn)(5,0)到直線 y=ax
          的距離為1,a=
          1
          24
          =
          6
          12
          ,此時(shí)點(diǎn)(6,0)到直線y=
          1
          24
          x的距離為
          6
          25
          2
          ,
          直線y=
          1
          24
          x與曲線 y=
          2-(x-6)2
          ,x∈[5,7]相交于兩個(gè)點(diǎn).
          (ⅳ)當(dāng)直線y=ax過點(diǎn)(5,1)時(shí),a=
          1
          5
          ,此時(shí)點(diǎn)(5,0)到直線y=
          1
          5
          x的距離為
          5
          26
          <1,直線y=
          1
          5
          x與曲線 y=
          1-(x-5)2
          ,x∈[4,5]相交于兩個(gè)點(diǎn).
          點(diǎn)(6,0)到直線y=
          1
          5
          x的距離為
          6
          26
          2
          ,直線y=
          1
          5
          x與曲線y=
          2-(x-6)2
          ,x∈[5,7]相交于兩個(gè)點(diǎn).
          (ⅴ)當(dāng)a=0時(shí),直線y=0與曲線y=f(x),x∈[-8,8]有且只有5個(gè)交點(diǎn);
          (ⅵ)當(dāng)a<0時(shí),直線y=ax與曲線y=f(x),x∈[-8,8]有且只有1個(gè)交點(diǎn);
          因?yàn)楹瘮?shù)y=f(x),x∈[-8,8]的圖象關(guān)于y軸對(duì)稱,…(14分)
          故綜上可知:(1)當(dāng)a<0時(shí),方程 f(x)=a|x|只有1實(shí)數(shù)根;
          (2)當(dāng)a>
          17
          17
          時(shí),方程f(x)=a|x|有3個(gè)實(shí)數(shù)根;
          (3)當(dāng)a=
          17
          17
          ,或a=0時(shí),方程f(x)=a|x|有5個(gè)實(shí)數(shù)根;
          (4)當(dāng) 0<a<
          1
          5
          6
          12
          <a<
          17
          17
          時(shí),方程f(x)=a|x|有7個(gè)實(shí)數(shù)根;
          (5)當(dāng)a=
          6
          12
          時(shí),方程f(x)=a|x|有9個(gè)實(shí)數(shù)根;
          (6)當(dāng)a=
          1
          5
          ,方程f(x)=a|x|有2個(gè)實(shí)數(shù)根;
          (7)當(dāng)
          1
          5
          <a<
          6
          12
          時(shí),方程f(x)=a|x|有11個(gè)實(shí)數(shù)根.…(18分)
          點(diǎn)評(píng):本題主要考查分段函數(shù)的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•浦東新區(qū)一模)函數(shù)y=
          log2(x-2) 
          的定義域?yàn)?!--BA-->
          [3,+∞)
          [3,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•浦東新區(qū)一模)若X是一個(gè)非空集合,M是一個(gè)以X的某些子集為元素的集合,且滿足:
          ①X∈M、∅∈M;
          ②對(duì)于X的任意子集A、B,當(dāng)A∈M且B∈M時(shí),有A∪B∈M;
          ③對(duì)于X的任意子集A、B,當(dāng)A∈M且B∈M時(shí),A∩B∈M;
          則稱M是集合X的一個(gè)“M-集合類”.
          例如:M={∅,,{c},{b,c},{a,b,c}}是集合X={a,b,c}的一個(gè)“M-集合類”.已知集合X={a,b,c},則所有含{b,c}的“M-集合類”的個(gè)數(shù)為
          10
          10

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•浦東新區(qū)二模)手機(jī)產(chǎn)業(yè)的發(fā)展催生了網(wǎng)絡(luò)新字“孖”.某學(xué)生準(zhǔn)備在計(jì)算機(jī)上作出其對(duì)應(yīng)的圖象,其中A(2,2),如圖所示.在作曲線段AB時(shí),該學(xué)生想把函數(shù)y=x
          1
          2
          ,x∈[0,2]
          的圖象作適當(dāng)變換,得到該段函數(shù)的曲線.請(qǐng)寫出曲線段AB在x∈[2,3]上對(duì)應(yīng)的函數(shù)解析式
          y=
          2
          (x-2)
          1
          2
          +2
          y=
          2
          (x-2)
          1
          2
          +2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•浦東新區(qū)一模)設(shè)復(fù)數(shù)z滿足|z|=
          10
          ,且(1+2i)z(i是虛數(shù)單位)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在直線y=x上,求z.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•浦東新區(qū)二模)已知z=
          1
          1+i
          ,則
          .
          z
          =
          1
          2
          +
          1
          2
          i
          1
          2
          +
          1
          2
          i

          查看答案和解析>>

          同步練習(xí)冊(cè)答案