日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=lnx+1.
          (Ⅰ)證明:當(dāng)x>0時,f(x)≤x;
          (Ⅱ)設(shè) ,若g(x)≥0對x>0恒成立,求實數(shù)a的取值范圍.

          【答案】解:(Ⅰ)證明:構(gòu)造函數(shù)m(x)=f(x)﹣x=lnx+1﹣x, 得x=1;
          當(dāng)x∈(0,1)時,m'(x)>0;當(dāng)x∈(1,+∞)時,m'(x)<0;
          ∴[m(x)]max=m(1)=0;
          ∴m(x)≤0;
          ∴f(x)≤x;
          (Ⅱ)若g(x)≥0對x>0恒成立等價于 對x>0恒成立;
          ,問題等價于a≥G(x)max
          由(Ⅰ)知lnx+1≤x(當(dāng)且僅當(dāng)x=1時取得等號);
          (當(dāng)且僅當(dāng)x=1時取得等號);
          故G(x)max=1,所以a≥1;
          ∴實數(shù)a的取值范圍為[1,+∞)
          【解析】(Ⅰ)先構(gòu)造函數(shù)m(x)=lnx+1﹣x,然后求導(dǎo),根據(jù)導(dǎo)數(shù)符號即可求出函數(shù)m(x)的最大值為0,即得到m(x)≤0,從而證得f(x)≤x;(Ⅱ)根據(jù)x>0, 便可解得 ,而根據(jù)上面知lnx+1≤x恒成立,從而便可求得 的最大值,進(jìn)而即可得出實數(shù)a的取值范圍.
          【考點精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù),需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能得出正確答案.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=xlnx﹣ax2+(2a﹣1)x.
          (1)若a= ,求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)若x∈[1,+∞)時恒有f(x)≤a﹣1,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[選修44:坐標(biāo)系與參數(shù)方程]

          在直角坐標(biāo)系中中,曲線的參數(shù)方程為為參數(shù),). 以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

          (Ⅰ)求曲線C的普通方程和直線的直角坐標(biāo)方程;

          (Ⅱ)設(shè)是曲線上的一個動點,當(dāng)時,求點到直線的距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若數(shù)列{an}前n項和為Sn , a1=a2=2,且滿足Sn+Sn+1+Sn+2=3n2+6n+5,則S47等于

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】我國古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中提出割圓術(shù):“割之彌細(xì),所失彌少,割之割,以至于不可割,則與圓合體,而無所失矣”,即通過圓內(nèi)接正多邊形細(xì)割圓,并使正多邊形的面積無限接近圓的面積,進(jìn)而來求得較為精確的圓周率.如果用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值記為,那么用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值加可表示成( )

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4﹣4:極坐標(biāo)與參數(shù)方程
          極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知曲線C1的極坐標(biāo)方程為 ,曲線C2的極坐標(biāo)方程為ρsinθ=a(a>0),射線 , 與曲線C1分別交異于極點O的四點A,B,C,D.
          (Ⅰ)若曲線C1關(guān)于曲線C2對稱,求a的值,并把曲線C1和C2化成直角坐標(biāo)方程;
          (Ⅱ)求|OA||OC|+|OB||OD|的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】O為坐標(biāo)原點,直線l與圓x2+y2=2相切.
          (1)若直線l分別與x、y軸正半軸交于A、B兩點,求△AOB面積的最小值及面積取得最小值時的直線l的方程.
          (2)設(shè)直線l交橢圓 =1于P、Q兩點,M為PQ的中點,求|OM|的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

          (1)求橢圓的方程;

          (2)設(shè)點是軌跡上位于第一象限且在直線右側(cè)的動點,若以為圓心,線段為半徑的圓有兩個公共點.試求圓在右焦點處的切線軸交點縱坐標(biāo)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xiyi)(i=1,2,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

          A. yx具有正的線性相關(guān)關(guān)系

          B. 回歸直線過樣本點的中心(,

          C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

          D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

          查看答案和解析>>

          同步練習(xí)冊答案