日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.直線與橢圓交于不同兩點(diǎn)都在軸上方,且.

          1求橢圓的方程;

          2當(dāng)為橢圓與軸正半軸的交點(diǎn)時,求直線方程;

          3對于動直線,是否存在一個定點(diǎn),無論如何變化,直線總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請說明理由.

          【答案】1 2 ;3 直線總經(jīng)過定點(diǎn).

          【解析】

          試題分析:1 設(shè),用坐標(biāo)表示條件列出方程化簡整理可得橢圓的標(biāo)準(zhǔn)方程;21可知,,即可得,由,寫出直線的方程與橢圓方程聯(lián)立,求出點(diǎn)的坐標(biāo),由兩點(diǎn)式求直線的方程即可;3,得,設(shè)直線方程為,與橢圓方程聯(lián)立得,由根與系數(shù)關(guān)系計算,從而得到直線方程為,從而得到直線過定點(diǎn).

          試題解析: 1設(shè),則,………………1分

          ,化簡,得,橢圓的方程為.………………3分

          2,………………4分

          ,,.

          代入解,得,………………6分

          ,.即直線方程為.………………7分

          3,.

          設(shè),直線方程為.代直線方程,得

          .………………9分

          ,,=

          ,……………11分

          直線方程為

          直線總經(jīng)過定點(diǎn).………………12分

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)相鄰兩對稱軸間的距離為,若將的圖像先向左平移個單位,再向下平移1個單位,所得的函數(shù)為奇函數(shù).

          (1)求的解析式,并求的對稱中心;

          (2)若關(guān)于的方程在區(qū)間上有兩個不相等的實(shí)根,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中,分別為角的對邊,設(shè).

          (1)若,且,求角的大。

          (2)若,求角的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線 是焦點(diǎn),直線是經(jīng)過點(diǎn)的任意直線.

          (Ⅰ)若直線與拋物線交于、兩點(diǎn),且是坐標(biāo)原點(diǎn), 是垂足),求動點(diǎn)的軌跡方程;

          (Ⅱ)若兩點(diǎn)在拋物線上,且滿足,求證:直線必過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】我國古代數(shù)學(xué)名著《續(xù)古摘奇算法》(楊輝)一書中有關(guān)于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入的方格中,使得每一行,每一列及對角線上的三個數(shù)的和都相等,我們規(guī)定:只要兩個幻方的對應(yīng)位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個數(shù)是( )

          8

          3

          4

          1

          5

          9

          6

          7

          2

          A. 9 B. 8 C. 6 D. 4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線 的焦點(diǎn)為,過點(diǎn)的直線相交于兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為

          (Ⅰ)判斷點(diǎn)是否在直線上,并給出證明;

          (Ⅱ)設(shè),求的內(nèi)切圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中平面,且,

          (1)求證:;

          (2)在線段上,是否存在一點(diǎn),使得二面角的大小為45°,如果存在,求與平面所成角的正弦值,如果不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正四棱錐中, ,側(cè)棱與底面所成角的正切值為

          (1)若中點(diǎn),求異面直線所成角的正切值;

          (2)求側(cè)面與底面所成二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

          (1)當(dāng)時,討論函數(shù)的單調(diào)性;

          (2)當(dāng)時,求證:對任意的.

          查看答案和解析>>

          同步練習(xí)冊答案