日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】給出下列命題:
          (1)設(shè)f(x)與g(x)是定義在R上的兩個函數(shù),若|f(x1)+f(x2)|≥|g(x1)+g(x2)|恒成立,且f(x)為奇函數(shù),則g(x)也是奇函數(shù);
          (2)若x1 , x2∈R,都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,且函數(shù)f(x)在R上遞增,則f(x)+g(x)在R上也遞增;
          (3)已知a>0,a≠1,函數(shù)f(x)= ,若函數(shù)f(x)在[0,2]上的最大值比最小值多 ,則實數(shù)a的取值集合為 ;
          (4)存在不同的實數(shù)k,使得關(guān)于x的方程(x2﹣1)2﹣|x2﹣1|+k=0的根的個數(shù)為2個、4個、5個、8個.則所有正確命題的序號為

          【答案】(1)(2)、(4)
          【解析】解:對于(1),∵|f(x1)+f(x2)|≥|g(x1)+g(x2)|恒成立,
          令x2=﹣x1 , 則|f(x1)+f(﹣x1)|≥|g(x1)+g(﹣x1)|恒成立,
          ∵f(x)是奇函數(shù),
          ∴|f(x1)﹣f(x1)|≥|g(x1)+g(﹣x1)|恒成立,
          ∴g(x1)+g(﹣x1)=0,
          ∴g(﹣x1)=﹣g(x1),
          ∴g(x)是奇函數(shù),(1)正確;
          對于(2),設(shè)x1<x2 ,
          ∵f(x)是R上的增函數(shù),
          ∴f(x1)<f(x2),
          ∵|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|恒成立,
          ∴f(x1)﹣f(x2)<g(x1)﹣g(x2)<f(x2)﹣f(x1),
          ∴h(x1)﹣h(x2)=f(x1)﹣f(x2)+g(x1)﹣g(x2)<f(x1)﹣f(x2)+f(x2)﹣f(x1),
          ∴h(x1)﹣h(x2)<0,
          ∴函數(shù)h(x)=f(x)+g(x)在R上是增函數(shù),(2)正確;
          對于(3),①當(dāng)a>1時,函數(shù)f(x)= 在[0,2]上的最大值為f(1)=a,最小值為f(0)=1或f(2)=a﹣2;
          當(dāng)a﹣1= 時,解得a= ,此時f(2)= >1,滿足題意,
          當(dāng)a﹣(a﹣2)=0時,2=0不滿足題意,∴a= ;
          ②當(dāng)0<a<1時,在[0,1]上,f(x)=ax是減函數(shù);在(1,2]上,f(x)=﹣x+a是減函數(shù),
          ∵f(0)=a0=1>﹣1+a,∴函數(shù)的最大值為f(0)=1;
          而f(2)=﹣2+a<﹣1+a=f(1),所以函數(shù)的最小值為f(2)=﹣2+a,
          因此,﹣2+a+ =1,解得a= ∈(0,1)符合題意;
          綜上,實數(shù)a的取值集合為{ , },(3)錯誤;
          對于(4),關(guān)于x的方程(x2﹣1)2﹣|x2﹣1|+k=0可化為(x2﹣1)2﹣(x2﹣1)+k=0(x≥1或x≤﹣1)(Ⅰ)
          或(x2﹣1)2+(x2﹣1)+k=0(﹣1<x<1)(Ⅱ)
          ①當(dāng)k= 時,方程(Ⅰ)有兩個不同的實根± ,方程(Ⅱ)有兩個不同的實根± ,
          即原方程恰有4個不同的實根;
          ②當(dāng)k=0時,原方程恰有5個不同的實根;

          ③當(dāng)k= 時,方程(Ⅰ)的解為± ,± ,方程(Ⅱ)的解為± ,± ,
          即原方程恰有8個不同的實根;
          ④當(dāng)k=﹣2時,方程化為(|x2﹣1|+1)(|x2﹣1|﹣2)=0,
          解得|x2﹣1|=2或|x2﹣1|=﹣1(不合題意,舍去);
          所以x2﹣1=±2,
          解得x2﹣1=2,
          即x=± ,方程有2個實數(shù)根;
          所以存在不同的實數(shù)k,使得關(guān)于x的方程(x2﹣1)2﹣|x2﹣1|+k=0的根的個數(shù)為2個、4個、5個、8個,
          命題(4)正確;
          綜上,正確的命題是(1)、(2)、(4).
          所以答案是:(1)(2)、(4).
          【考點精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的判斷方法的相關(guān)知識,掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較,以及對函數(shù)的奇偶性的理解,了解偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓的圓心在坐標(biāo)原點,且與直線相切.

          1)求直線被圓所截得的弦的長;

          2)過點作兩條與圓相切的直線,切點分別為求直線的方程;

          3)若與直線垂直的直線與圓交于不同的兩點,若為鈍角,求直線軸上的截距的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)求函數(shù) 處的切線方程;

          (2)設(shè) ,討論函數(shù) 的零點個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:

          (1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;

          (2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

          箱產(chǎn)量<50 kg

          箱產(chǎn)量≥50 kg

          舊養(yǎng)殖法

          新養(yǎng)殖法

          (3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.

          附:

          P

          0.050 0.010 0.001

          k

          3.841 6.635 10.828

          .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)有關(guān)于x的一元二次方程x2+2ax+b2=0.

          (1)a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.

          (2)a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù),其中.已知

          (Ⅰ)求

          (Ⅱ)將函數(shù)的圖象上各點的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個單位,得到函數(shù)的圖象,求上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC為等邊三角形,AE=1,BD=2,CD與平面ABCDE所成角的正弦值為

          (1)若F是線段CD的中點,證明:EF⊥平面DBC;
          (2)求二面角D﹣EC﹣B的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示為某幾何體形狀的紙盒的三視圖,在此紙盒內(nèi)放一個小正四面體,若小正四面體在紙盒內(nèi)可以任意轉(zhuǎn)動,則小正四面體的棱長的最大值為(

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知y=fx)為二次函數(shù),若y=fx)在x=2處取得最小值﹣4,且y=fx)的圖象經(jīng)過原點,

          (1)求fx)的表達式;

          (2)求函數(shù)在區(qū)間上的最大值和最小值.

          查看答案和解析>>

          同步練習(xí)冊答案