日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 試證明,對一切xR都有,當(dāng)且僅當(dāng)時等號成立.利用這個結(jié)果,求函數(shù)y =sin xcos xsinx· cos x的最大值和最小值.

           

          答案:
          解析:

          要證明,只要證明:sin 2 x+2sin x · cos xcos 2 x≤2,

          只要證明對一切xR都有:2sin x · cos x≤1,

          只要證明:2sin x · cos x sin 2 xcos 2 x,

          即證明:(sin xcos x)2 ≥0.

          因為對任意xR,不等式(sin xcos x)2 ≥0總成立,且上述各步都可逆,所以對一切xR,都有.論證中可以看出:當(dāng)且僅當(dāng)sin xcos x =0,即tan x =1時,不等式中的等號成立,也就是說當(dāng)且僅當(dāng)時,(kZ),

          函數(shù)y =sin x · cos xsin xcos x中,把sin xcos x表示或者把cos xsin x表示都要出現(xiàn)根式,不便于求最大、最小值.注意到

          ,

          則有:

          sin xcos x =t,如本題所證知:

          只要考查關(guān)于t的二次函數(shù)的最大、最小值,這個二次函數(shù)圖象是開口向上的拋物線的一段弧,

          ,可見:

          當(dāng)t =1時,該函數(shù)有最小值-1;當(dāng)時,該函數(shù)有最大值

               綜上分析知:

          當(dāng)x =2π時,函數(shù)y =sin x · cos xsin xcos x有最小值-1;

          當(dāng)時,該函數(shù)有最大值

           


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f (x)是R上的偶函數(shù),且在(0,+∞)上單調(diào)遞增,并且f (x)<0對一切x∈R成立,試判斷-
          1f(x)
          在(-∞,0)上的單調(diào)性,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

          先閱讀下列不等式的證法:
          已知a1,a2∈R,a12+a22=1,求證:|a1+a2|≤
          2

          證明:構(gòu)造函數(shù)f(x)=(x-a12+(x-a22,則f(x)=2x2-2(a1+a2)x+1,因為對一切x∈R,恒有f(x)≥0,所以△=4(a1+a22-8≤0,故得|a1+a2|≤
          2

          再解決下列問題:
          (1)若a1,a2,a3∈R,a12+a22+a32=1,求證|a1+a2+a3|≤
          3

          (2)試將上述命題推廣到n個實數(shù),并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

          試證明,對一切xR都有,當(dāng)且僅當(dāng)時等號成立.利用這個結(jié)果,求函數(shù)y =sin xcos xsinx· cos x的最大值和最小值.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          先閱讀下列不等式的證法:
          已知a1,a2∈R,a12+a22=1,求證:|a1+a2|≤
          2

          證明:構(gòu)造函數(shù)f(x)=(x-a12+(x-a22,則f(x)=2x2-2(a1+a2)x+1,因為對一切x∈R,恒有f(x)≥0,所以△=4(a1+a22-8≤0,故得|a1+a2|≤
          2

          再解決下列問題:
          (1)若a1,a2,a3∈R,a12+a22+a32=1,求證|a1+a2+a3|≤
          3

          (2)試將上述命題推廣到n個實數(shù),并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊答案