日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 平面直角坐標(biāo)系中過C(p,0)作直線與拋物線y2=2px(p>0)相交于A、B兩點(diǎn),如圖設(shè)A(x1,y1)、B(x2,y2
          (1)求證y1,y2為定值;
          (2)若點(diǎn)D是點(diǎn)C關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn),求△ADB面積的最小值.
          分析:(1)分情況討論:當(dāng)直線AB垂直于x軸時(shí),計(jì)算得y1y2=-2p2;當(dāng)直線AB不垂直于x軸時(shí),設(shè)直線AB的方程為:y=k(x-p),代入拋物線方程得ky2-2py-2p2k=0,因此有y1y2=-2p2為定值.
          (2)先表示出S△ADB=
          1
          2
          DC•|y1-y2|
          ,再分類討論:當(dāng)直線AB垂直于x軸時(shí)情況比較簡(jiǎn)單;當(dāng)直線AB不垂直于x軸時(shí),由(1)知  y1+y2=
          2p
          k
          ,最后利用基本不等式求得△ADB面積的最小值即可.
          解答:解:(1)當(dāng)直線AB垂直于x軸時(shí),y1=
          2
          p,y2=-
          2
          p
          ,因此y1y2=-2p2(定值);….(1分)
          當(dāng)直線AB不垂直于x軸時(shí),設(shè)直線AB的方程為:y=k(x-p),
          y=k(x-p)
          y2=2px
          得ky2-2py-2p2k=0,∴y1y2=-2p2..(3分)
          因此有y1y2=-2p2為定值.….(1分)
          (2)D(-p,0),∴DC=2p.S△ADB=
          1
          2
          DC•|y1-y2|
          .…(1分)
          當(dāng)直線AB垂直于x軸時(shí),S△ADB=
          1
          2
          •2p•2
          2
          p=2
          2
          p2
          ;…(1分)
          當(dāng)直線AB不垂直于x軸時(shí),由(1)知  y1+y2=
          2p
          k
          ,
          因此|y1-y2|=
          (y1+y2)2-4y1y2
          =
          4p2
          k2
          +8p2
          >2
          2
          p
          ,∴S△ADB>2
          2
          p2
          .…(2分)
          綜上,△ADB面積的最小值為2
          2
          p2
          .…(1分)
          點(diǎn)評(píng):本題考查弦長(zhǎng)的計(jì)算和直線與拋物線位置關(guān)系的綜合運(yùn)用,解題時(shí)要注意分類討論思想和弦長(zhǎng)公式的合理運(yùn)用,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)A(2,1),B(-1,1),若點(diǎn)P滿足
          OP
          =α•
          OA
          +β•
          OB
          ,其中α,β∈R且2α22=
          2
          3
          . 
          1)求點(diǎn)P的軌跡C的方程.2)設(shè)D(0,2),過D的直線L與曲線C交于不同的兩點(diǎn)M、N,且M點(diǎn)在D,N之間,設(shè)
          DM
          DN
          ,求λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (理科)在平面直角坐標(biāo)系中,F(xiàn)為拋物線C:x2=2py(p>0)的焦點(diǎn),M為拋物線C上位于第一象限內(nèi)的任意一點(diǎn),過M,F(xiàn),O三點(diǎn)的圓的圓心為Q,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為
          3
          4

          (1)求拋物線C的方程;
          (2)是否存在點(diǎn)M,使得直線MQ與拋物線C相切于點(diǎn)M?若存在,求出點(diǎn)M;若不存在,說明理由.
          (3)若點(diǎn)M的橫坐標(biāo)為2,直線l:y=kx+
          1
          4
          與拋物線C有兩個(gè)不同的交點(diǎn)A、B,l與圓Q有兩個(gè)不同的交點(diǎn)D、E,用含k的式子表示 AB2+DE2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          平面直角坐標(biāo)系中,O為坐標(biāo)系原點(diǎn),給定兩點(diǎn)A(1,0),B(0,2),點(diǎn)C滿足
          OC
          =α•
          OA
          +β•
          OB
          ,其中α,β∈R,α-2β=1.
          (1)求點(diǎn)C(x,y)的軌跡方程;
          (2)設(shè)點(diǎn)C的軌跡與雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          (a,b>0)交于兩點(diǎn)M、N,且以MN為直徑的圓過原點(diǎn),求證:
          1
          a2
          -
          1
          b2
          為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,已知點(diǎn)A(1,0),點(diǎn)B在直線l:x=-1上運(yùn)動(dòng),過點(diǎn)B與l垂直的直線和線段AB的垂直平分線相交于點(diǎn)M.
          (1)求動(dòng)點(diǎn)M的軌跡E的方程;
          (2)過(1)中的軌跡E上的定點(diǎn)P(x0,y0)(y0>0)作兩條直線分別與軌跡E相交于C(x1,y1),D(x2,y2)兩點(diǎn).試探究:當(dāng)直線PC,PD的斜率存在且傾斜角互補(bǔ)時(shí),直線CD的斜率是否為定值?若是,求出這個(gè)定值;若不是,說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案