日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:n=
          n(n+1)
          2
          -
          (n-1)•n
          2
          ,n•(n+1)=
          n•(n+1)•(n+2)
          3
          -
          (n-1)•n•(n+1)
          3

          由以上兩式,可以類比得到n(n+1)(n+2)=
          n(n+1)(n+2)(n+3)
          4
          -
          (n-1)•n•(n+1)(n+2)
          4
          n(n+1)(n+2)(n+3)
          4
          -
          (n-1)•n•(n+1)(n+2)
          4
          分析:根據(jù)n=
          n(n+1)
          2
          -
          (n-1)•n
          2
          ,n•(n+1)=
          n•(n+1)•(n+2)
          3
          -
          (n-1)•n•(n+1)
          3
          的特點(diǎn),類比得到n(n+1)(n+2)的分解式即可.
          解答:解:由于:n=
          n(n+1)
          2
          -
          (n-1)•n
          2
          ,n•(n+1)=
          n•(n+1)•(n+2)
          3
          -
          (n-1)•n•(n+1)
          3

          第一個(gè)式子中,右邊是兩個(gè)分母是2的分式的差,分子兩個(gè)連續(xù)自然數(shù)的積;
          第二個(gè)式子中,右邊是兩個(gè)分母是3的分式的差,分子三個(gè)連續(xù)自然數(shù)的積;
          可由類比推理可得“n(n+1)(n+2)=
          n(n+1)(n+2)(n+3)
          4
          -
          (n-1)•n•(n+1)(n+2)
          4

          故答案為:
          n(n+1)(n+2)(n+3)
          4
          -
          (n-1)•n•(n+1)(n+2)
          4
          點(diǎn)評(píng):本題考查類比推理,解答本題的關(guān)鍵是:找出兩類事物的相似性或一致性,得出一個(gè)明確的命題(猜想).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=(
          x
          +
          2
          )2(x>0)
          ,設(shè)正項(xiàng)數(shù)列an的首項(xiàng)a1=2,前n 項(xiàng)和Sn滿足Sn=f(Sn-1)(n>1,且n∈N*).
          (1)求an的表達(dá)式;
          (2)在平面直角坐標(biāo)系內(nèi),直線ln的斜率為an,且ln與曲線y=x2相切,ln又與y軸交于點(diǎn)Dn(0,bn),當(dāng)n∈N*時(shí),記dn=
          1
          4
          |
          Dn+1Dn
          |-1
          ,若Cn=
          d
          2
          n+1
          +
          d
          2
          n
          2dn+1dn
          ,求數(shù)列cn的前n 項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)y=f(x)對(duì)任意實(shí)數(shù)x,都有f(x)=2f(x+1),當(dāng)x∈[0,1]時(shí),f(x)=
          27
          4
          x2(1-x).
          (Ⅰ)已知n∈N+,當(dāng)x∈[n,n+1]時(shí),求y=f(x)的解析式;
          (Ⅱ)求證:對(duì)于任意的n∈N+,當(dāng)x∈[n,n+1]時(shí),都有|f(x)|≤
          1
          2n
          ;
          (Ⅲ)對(duì)于函數(shù)y=f(x)(x∈[0,+∞),若在它的圖象上存在點(diǎn)P,使經(jīng)過點(diǎn)P的切線與直線x+y=1平行,那么這樣點(diǎn)有多少個(gè)?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)y=f(x)對(duì)任意實(shí)數(shù)x,都有f(x)=2f(x+1),當(dāng)x∈[0,1]時(shí),f(x)=數(shù)學(xué)公式x2(1-x).
          (Ⅰ)已知n∈N+,當(dāng)x∈[n,n+1]時(shí),求y=f(x)的解析式;
          (Ⅱ)求證:對(duì)于任意的n∈N+,當(dāng)x∈[n,n+1]時(shí),都有|f(x)|≤數(shù)學(xué)公式;
          (Ⅲ)對(duì)于函數(shù)y=f(x)(x∈[0,+∞),若在它的圖象上存在點(diǎn)P,使經(jīng)過點(diǎn)P的切線與直線x+y=1平行,那么這樣點(diǎn)有多少個(gè)?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)函數(shù)y=f(x)對(duì)任意實(shí)數(shù)x,都有f(x)=2f(x+1),當(dāng)x∈[0,1]時(shí),f(x)=
          27
          4
          x2(1-x).
          (Ⅰ)已知n∈N+,當(dāng)x∈[n,n+1]時(shí),求y=f(x)的解析式;
          (Ⅱ)求證:對(duì)于任意的n∈N+,當(dāng)x∈[n,n+1]時(shí),都有|f(x)|≤
          1
          2n
          ;
          (Ⅲ)對(duì)于函數(shù)y=f(x)(x∈[0,+∞),若在它的圖象上存在點(diǎn)P,使經(jīng)過點(diǎn)P的切線與直線x+y=1平行,那么這樣點(diǎn)有多少個(gè)?并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案