日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)在三棱錐P-ABC中,三條側(cè)棱PA,PB,PC兩兩垂直,H是△ABC的垂心
          求證:(1)PH⊥底面ABC   (2)△ABC是銳角三角形.
          分析:對(duì)于問題(1),由三條側(cè)棱PA,PB,PC兩兩垂直可以得到PA⊥面PBC,進(jìn)而得到PA⊥BC,由H是△ABC的垂心,得到BC⊥AE,從而得到PH⊥BC,同理可證PH⊥AC,從而得到證明;對(duì)于問題(2)可以通過余弦定理解決.
          解答:證明:(1)連接AH并延長交BC于一點(diǎn)E,連接PH,由于PA,PB,PC兩兩垂直可以得到PA⊥面PBC,而BC?面PBC,∴BC⊥PA,又H是三角形ABC的垂心,故AE⊥BC,又AE∩PA=A,∴BC⊥面PAE,而PH?面PAE,∴PH⊥BC,同理可以證明PH⊥AC,又AC∩BC=C,∴PH⊥底面ABC.  
          (2)設(shè)PA=a;PB=b;PC=c,則AB2=a2+b2,同理BC2=c2+b2,Ac2=a2+c2,在三角形ABC中,由余弦定理得:cosA=
          AB 2+AC 2-BC 2
          2AB×AC
          =
          a 2+b 2+a 2+c 2-c 2-b 2
          2
          a 2+b 2
          a 2+c 2
          =
          a 2
          a 2+b 2
          a 2+c 2
          >0
          ,同理可證cosB>0,cosC>0,所以,)△ABC是銳角三角形.
          點(diǎn)評(píng):本題考查直線與平面垂直的證明法:利用判定定理證明;以及解三角形的有關(guān)理論,第二問在立體幾何中考查平面幾何問題,要注意在空間的某個(gè)平面內(nèi),平面幾何的有關(guān)定理、公式等結(jié)論仍然成立.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在三棱錐P-ABC中,PA=PB=AB=
          2
          PC=
          2
          AC=
          2
          BC

          (Ⅰ)求證:PA⊥BC; 
          (Ⅱ)求二面角P-AB-C所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在三棱錐P-ABC中,AB=3,BC=4,AC=5,PA=1  面PAB⊥面CAB,面PAC⊥面CAB,則三棱錐P-ABC的體積是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)在三棱錐P-ABC中,PA⊥平面ABC.
          (1)若∠BAC=
          π3
          ,AB=AC=PA=2,E、F分別為棱AB、PC的中點(diǎn),求線段EF的長;
          (2)求證:“∠PBC=90°”的充要條件是“平面PBC⊥平面PAB”.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•蚌埠二模)如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分別為AB,AC中點(diǎn).
          (I)求證:DE∥面PBC;
          (II)求證:AB⊥PE;
          (III)求三棱錐B-PEC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖所示.
          (1)證明:AD⊥平面PBC;
          (2)求三棱錐D-ABC的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案