日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分12分)如圖所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1、A1A的中點.

          (1)求的長; (2)求cos< >的值;  (3)求證:A1B⊥C1M.

           

          【答案】

          (1)| |=.

          (2)cos<,>=.

          (3)計算·=0,推出A1B⊥C1M。

          【解析】

          試題分析:如圖,建立空間直角坐標系O—xyz.   

          (1)依題意得B(0,1,0)、N(1,0,1)

          ∴| |=.。。4分

          (2)依題意得A1(1,0,2)、B(0,1,0)、C(0,0,0)、B1(0,1,2)

          =(1,-1,2),=(0,1,2,),·=3,||=||=

          ∴cos<>=.。。。。。。。8分

          (3)證:依題意,得C1(0,0,2)、M(,2),=(-1,1,-2),={,0}.∴·=-+0=0,∴,∴A1B⊥C1M..。。。。。12分

          考點:本題主要考查立體幾何中線線垂直,距離及角的計算,空間向量的應用

          點評:典型題,立體幾何中平行、垂直關系的證明,距離及角的計算問題是高考中的必考題,通過建立適當?shù)淖鴺讼,可使問題簡化,向量的坐標運算要準確。

           

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源:2014屆江西高安中學高二上期末考試理科數(shù)學試卷(解析版) 題型:解答題

          (本題滿分12分)

          如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,的中點.

          (1)當時,求平面與平面的夾角的余弦值;

          (2)當為何值時,在棱上存在點,使平面?

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年湖北省八市高三3月聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

          (本題滿分12分)如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側(cè)棱,為中點,中點,上一個動點.

          (Ⅰ)確定點的位置,使得;

          (Ⅱ)當時,求二面角的平

          面角余弦值.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011-2012學年廣西桂林中學高三7月月考試題理科數(shù)學 題型:解答題

          (本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點,F(xiàn)是AD的中點.

           ⑴求異面直線PD與AE所成角的大;

           ⑵求證:EF⊥平面PBC ;

           ⑶求二面角F—PC—B的大。.

           

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年湖南省招生統(tǒng)一考試文科數(shù)學 題型:解答題

           

          (本題滿分12分)

          如圖3,在圓錐中,已知的直徑的中點.

          (I)證明:

          (II)求直線和平面所成角的正弦值.

           

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010年海南省高三五校聯(lián)考數(shù)學(文) 題型:解答題

          (本題滿分12分)

          如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點,SA=SB=SC。

             (1)求證:BC⊥平面SDE;

             (2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。

           

          查看答案和解析>>

          同步練習冊答案