日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知a>0,函數(shù)f(x)=
          1-ax
          x
          ,x∈(0,+∞)
          .設(shè)0<x1
          2
          a
          ,記曲線y=f(x)在點(diǎn)M(x1,f(x1))處的切線為l.
          (Ⅰ)求l的方程;
          (Ⅱ)設(shè)l與x軸交點(diǎn)為(x2,0).證明:
          0<x2
          1
          a
          ;
          ②若x1
          1
          a
          ,則x1x2
          1
          a
          分析:(I)欲求切線l的方程,則須求出它的斜率,根據(jù)切線斜率的幾何意義便不難發(fā)現(xiàn),問題歸結(jié)為求曲線y=f(x)在點(diǎn)M(x1,f(x1))的一階導(dǎo)數(shù)值.
          (Ⅱ)①要求x2的變化范圍,則須找到使x2產(chǎn)生變化的原因,顯然,x2變化的根本原因可歸結(jié)為x1的變化,因此,找到x2與x1的等量關(guān)系式,就成;②欲比較x2與x1的大小關(guān)系,判斷它們的差的符號(hào)即可.
          解答:解:(I)求f(x)的導(dǎo)數(shù):f(x)=-
          1
          x2
          ,由此得切線l的方程:y-(
          1-ax1
          x1
          )=-
          1
          x2
          (x-x1)

          (II)證:依題意,切線方程中令y=0,x2=x1(1-ax1)+x1=x1(2-ax1),其中0<x1
          2
          a

          ①由0<x1
          2
          a
          ,x2=x1(2-ax1),有x2>0,及x2=-a(x1-
          1
          a
          )2+
          1
          a

          0<x2
          1
          a
          ,當(dāng)且僅當(dāng)x1=
          1
          a
          時(shí),x2=
          1
          a

          當(dāng)x1
          1
          a
          時(shí),ax1<1,因此,x2=x1(2-ax1)>x1,且由①,x2
          1
          a
          所以x1x2
          1
          a
          點(diǎn)評(píng):本小題主要考查利用導(dǎo)數(shù)求曲線切線的方法,考查不等式的基本性質(zhì),以及分析和解決問題的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項(xiàng)的命題中為假命題的是( 。
          A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=ln(2-x)+ax.
          (1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=ln(2-x)+ax.
          (1)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值;
          (2)求函數(shù)f(x)的單調(diào)區(qū)間;
          (3)求函數(shù)f(x)在[0,1]上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=lnx-ax2,x>0.(f(x)的圖象連續(xù)不斷)
          (Ⅰ)當(dāng)a=
          1
          8
          時(shí)
          ①求f(x)的單調(diào)區(qū)間;
          ②證明:存在x0∈(2,+∞),使f(x0)=f(
          3
          2
          );
          (Ⅱ)若存在均屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明
          ln3-ln2
          5
          ≤a≤
          ln2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=
          |x-2a|
          x+2a
          在區(qū)間[1,4]上的最大值等于
          1
          2
          ,則a的值為
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案