日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•北京)設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合.對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n);記K(A)為|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
          (1)如表A,求K(A)的值;
          1 1 -0.8
          0.1 -0.3 -1
          (2)設(shè)數(shù)表A∈S(2,3)形如
          1 1 c
          a b -1
          求K(A)的最大值;
          (3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值.
          分析:(1)根據(jù)ri(A),Cj(A),定義求出r1(A),r2(A),c1(A),c2(A),c3(A),再根據(jù)K(A)為|r1(A)|,|R2(A)|,|R3(A)|,|C1(A)|,|C2(A)|,|C3(A)|中的最小值,即可求出所求.
          (2)先用反證法證明k(A)≤1,然后證明k(A)=1存在即可;
          (3)首先構(gòu)造滿足k(A)=
          2t+1
          t+2
          的A={ai,j}(i=1,2,j=1,2,…,2t+1),然后證明
          2t+1
          t+2
          是最大值即可.
          解答:解:(1)由題意可知r1(A)=1.2,r2(A)=-1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=-1.8
          ∴K(A)=0.7
          (2)先用反證法證明k(A)≤1:
          若k(A)>1
          則|c1(A)|=|a+1|=a+1>1,∴a>0
          同理可知b>0,∴a+b>0
          由題目所有數(shù)和為0
          即a+b+c=-1
          ∴c=-1-a-b<-1
          與題目條件矛盾
          ∴k(A)≤1.
          易知當(dāng)a=b=0時(shí),k(A)=1存在
          ∴k(A)的最大值為1
          (3)k(A)的最大值為
          2t+1
          t+2

          首先構(gòu)造滿足k(A)=
          2t+1
          t+2
          的A={ai,j}(i=1,2,j=1,2,…,2t+1):a1,1=a1,2=…=a1,t=1,a1,t+1=a1,t+2=…=a1,2t+1=-
          t-1
          t+2
          ,a2,1=a2,2=…=a2,t=
          t2+t+1
          t(t+2)
          ,a2,t+1=a2,t+2=…=a2,2t+1=-1

          經(jīng)計(jì)算知,A中每個(gè)元素的絕對(duì)值都小于1,所有元素之和為0,且|r1(A)|=|r2(A)|=
          2t+1
          t+2
          ,|c1(A)|=|c2(A)|=…=|ct(A)|=1+
          t2+t+1
          t(t+2)
          >1+
          t+1
          t+2
          2t+1
          t+2
          |ct+1(A)|=|ct+2(A)|=…=|c2t+1(A)|=1+
          t-1
          t+2
          =
          2t+1
          t+2

          下面證明
          2t+1
          t+2
          是最大值.若不然,則存在一個(gè)數(shù)表A∈S(2,2t+1),使得k(A)=x>
          2t+1
          t+2

          由k(A)的定義知A的每一列兩個(gè)數(shù)之和的絕對(duì)值都不小于x,而兩個(gè)絕對(duì)值不超過1的數(shù)的和,其絕對(duì)值不超過2,故A的每一列兩個(gè)數(shù)之和的絕對(duì)值都在區(qū)間[x,2]中.由于x>1,故A的每一列兩個(gè)數(shù)符號(hào)均與列和的符號(hào)相同,且絕對(duì)值均不小于x-1.
          設(shè)A中有g(shù)列的列和為正,有h列的列和為負(fù),由對(duì)稱性不妨設(shè)g<h,則g≤t,h≥t+1.另外,由對(duì)稱性不妨設(shè)A的第一行行和為正,第二行行和為負(fù).
          考慮A的第一行,由前面結(jié)論知A的第一行有不超過t個(gè)正數(shù)和不少于t+1個(gè)負(fù)數(shù),每個(gè)正數(shù)的絕對(duì)值不超過1(即每個(gè)正數(shù)均不超過1),每個(gè)負(fù)數(shù)的絕對(duì)值不小于x-1(即每個(gè)負(fù)數(shù)均不超過1-x).因此|r1(A)|=r1(A)≤t•1+(t+1)(1-x)=2t+1-(t+1)x=x+(2t+1-(t+2)x)<x,
          故A的第一行行和的絕對(duì)值小于x,與假設(shè)矛盾.因此k(A)的最大值為
          2t+1
          t+2
          點(diǎn)評(píng):本題主要考查了進(jìn)行簡(jiǎn)單的演繹推理,以及新定義的理解和反證法的應(yīng)用,同時(shí)考查了分析問題的能力,屬于難題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•北京)設(shè)a,b∈R.“a=O”是“復(fù)數(shù)a+bi是純虛數(shù)”的( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•北京)設(shè)不等式組
          0≤x≤2
          0≤y≤2
          ,表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2的概率是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•北京模擬)某家俱公司生產(chǎn)甲、乙兩種型號(hào)的組合柜,每種組合柜的制造白坯時(shí)間、油漆時(shí)間如下表:
          型號(hào)甲 型號(hào)乙 生產(chǎn)能力(臺(tái)/天)
          制白坯時(shí)間(天) 6 12 120
          油漆時(shí)間(天) 8 4 64
          設(shè)該公司安排甲、乙二種柜的日產(chǎn)量分別為x,y,則20x+24y的最大值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•北京)設(shè)A是如下形式的2行3列的數(shù)表,
          a b c
          d e f
          滿足性質(zhì)P:a,b,c,d,e,f∈[-1,1],且a+b+c+d+e+f=0.
          記ri(A)為A的第i行各數(shù)之和(i=1,2),Cj(A)為A的第j列各數(shù)之和(j=1,2,3);記k(A)為|r1(A)|,|r2(A)|,|c1(A)|,|c2(A)|,|c3(A)|中的最小值.
          (1)對(duì)如下數(shù)表A,求k(A)的值
          1 1 -0.8
          0.1 -0.3 -1
          (2)設(shè)數(shù)表A形如
          1 1 -1-2d
          d d -1
          其中-1≤d≤0.求k(A)的最大值;
          (Ⅲ)對(duì)所有滿足性質(zhì)P的2行3列的數(shù)表A,求k(A)的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案