日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 探究函數(shù)f(x)=x2+
          16
          x2
          (x>0)
          的最小值,并確定取得最小值時x的值.列表如下,請觀察表中y值隨x值變化的特點,完成以下的問題.
          x 0.5 1 1.5 1.7 2 2.1 2.3 3 4 7
          y 64.25 17 9.36 8.43 8 8.04 8.31 10.7 17 49.33
          已知:函數(shù)f(x)=x2+
          16
          x2
          (x>0)
          在區(qū)間(0,2)上遞減,問:
          (1)函數(shù)f(x)=x2+
          16
          x2
          (x>0)
          在區(qū)間______上遞增.當(dāng)x=______時,y最小=______.
          (2)證明:函數(shù)f(x)=x2+
          16
          x2
          (x>0)
          在區(qū)間(0,2)遞減;
          (3)思考:函數(shù)f(x)=x2+
          16
          x2
          (x<0)
          有最大值或最小值嗎?如有,是多少?此時x為何值?(直接回答結(jié)果,不需證明)
          (1)由圖表可知,函數(shù)的單調(diào)增區(qū)間為(2,+∞);   當(dāng)x=2時y最小=4.
          故答案為(2,+∞),2,4. …(4分)
          (2)證明:設(shè) 0<x1<x2 <2,
          ∵f(x1)-f(x2)=x12+
          16
          x12
          -x22+
          16
          x22
          =(x12-x22)(1-
          16
          (x1x2)2
          )
          =
          (x12-x22)(x12x22-16)
          (x1x2)2

          又∵0<x1<x2<2,∴x12-x22<0,又∵x1,x2∈(0,2),∴0<(x1x2)2<16,
          (x1x2)2-16<0,∴f(x1)-f(x2)>0∴函數(shù)在(0,2)上為減函數(shù).…(9分)
          (3)思考:y=x2+
          16
          x2
          ,x∈(-∞,0)
          ,當(dāng)x=-2時,函數(shù)y有最小值等于 8.…(12分)
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          探究函數(shù)f(x)=x+
          4
          x
          ,x∈(0,+∞)
          的最小值,并確定取得最小值時x的值.列表如下:
          x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
          y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 5.8 7.57
          請觀察表中y值隨x值變化的特點,完成以下的問題.
          (1)函數(shù)f(x)=x+
          4
          x
          (x>0)
          在區(qū)間(0,2)上遞減,函數(shù)f(x)=x+
          4
          x
          (x>0)
          在區(qū)間
           
          上遞增;
          (2)函數(shù)f(x)=x+
          4
          x
          (x>0)
          ,當(dāng)x=
           
          時,y最小=
           
          ;
          (3)函數(shù)f(x)=x+
          4
          x
          (x<0)
          時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          探究函數(shù)f(x)=2x+
          8
          x
          ,x∈(0,+∞)
          的最小值,并確定取得最小值時x的值.列表如下:
          x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
          y 16 10 8.34 8.1 8.01 8 8.01 8.04 8.08 8.6 10 11.6 15.14
          請觀察表中y值隨x值變化的特點,完成以下的問題.
          (1)函數(shù)f(x)=2x+
          8
          x
          (x>0)
          在區(qū)間(0,2)上遞減;函數(shù)f(x)=2x+
          8
          x
          (x>0)
          在區(qū)間
          (2,+∞)
          (2,+∞)
          上遞增.當(dāng)x=
          2
          2
          時,y最小=
          4
          4

          (2)證明:函數(shù)f(x)=2x+
          8
          x
          (x>0)
          在區(qū)間(0,2)遞減.
          (3)思考:函數(shù)f(x)=2x+
          8
          x
          (x<0)
          時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          觀察下列表格,探究函數(shù)f(x)=x+
          4
          x
          ,x∈(0,+∞)
          的性質(zhì),
          x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
          y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
          (1)請觀察表中y值隨x值變化的特點,完成以下的問題.
          函數(shù)f(x)=x+
          4
          x
          (x>0)
          在區(qū)間(0,2)上遞減;
          函數(shù)f(x)=x+
          4
          x
          (x>0)
          在區(qū)間
          (2,+∞)
          (2,+∞)
          上遞增.
          當(dāng)x=
          2
          2
          時,y最小=
          4
          4

          (2)證明:函數(shù)f(x)=x+
          4
          x
          在區(qū)間(0,2)遞減.
          (3)函數(shù)f(x)=x+
          4
          x
          (x<0)
          時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案