日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)在(0,+∞)上滿足f(xy)=f(x)+f(y),且f(x)在定義域內(nèi)是減函數(shù).
          (1)求f(1)的值;
          (2)若f(2a-3)<0,試確定a的取值范圍.
          分析:(1)由函數(shù)f(x)在(0,+∞)上滿足f(xy)=f(x)+f(y),令x=y=1,能求出f(1)=0.
          (2)由f(x)在定義域內(nèi)是減函數(shù),f(2a-3)<0=f(1),知
          2a-3>0
          2a-3>1
          ,由此能求出a的取值范圍.
          解答:解:(1)∵函數(shù)f(x)在(0,+∞)上滿足f(xy)=f(x)+f(y),
          ∴f(1)=f(1)+f(1),解得f(1)=0.
          (2)∵f(x)在定義域內(nèi)是減函數(shù),f(2a-3)<0=f(1),
          2a-3>0
          2a-3>1
          ,解得a>2.
          ∴a的取值范圍是(2,+∞).
          點(diǎn)評:本題考查抽象函數(shù)的性質(zhì)及其應(yīng)用,解題時要認(rèn)真審題,注意等價轉(zhuǎn)化思想的合理運(yùn)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          6、已知函數(shù)f(x)在R上是減函數(shù),A(0,-2),B(-3,2)是其圖象上的兩點(diǎn),那么不等式-2<f(x)<2的解集是
          {x|-3<x<0}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          11、已知函數(shù)f(x)在R上滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是
          y=2x-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)在R上滿足y=f(x)=2f(2-x)+ex-1+x2,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是(  )
          A、2x-y-1=0B、x-y-3=0C、3x-y-2=0D、2x+y-3=0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)在R上為增函數(shù),且滿足f(4)<f(2x),則x的取值范圍是
          (2,+∞)
          (2,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          x2
          2
          -(1+2a)x+
          4a+1
          2
          ln(2x+1)
          ,a>0.
          (Ⅰ)已知函數(shù)f(x)在x=2取得極小值,求a的值;
          (Ⅱ)討論函數(shù)f(x)的單調(diào)區(qū)間;
          (Ⅲ)當(dāng)a>
          1
          4
          時,若存在x0∈(
          1
          2
          ,+∞),使得f(x0)<
          1
          2
          -2a2
          ,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案