日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (選修4-4:坐標(biāo)系與參數(shù)方程)
          已知曲線C1的參數(shù)方程為
          x=4+5cost
          y=5+5sint
          (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ.
          (Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
          (Ⅱ)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)
          分析:(Ⅰ)對(duì)于曲線C1利用三角函數(shù)的平方關(guān)系式sin2t+cos2t=1即可得到圓C1的普通方程;再利用極坐標(biāo)與直角坐標(biāo)的互化公式即可得到C1的極坐標(biāo)方程;
          (Ⅱ)先求出曲線C2的極坐標(biāo)方程;再將兩圓的方程聯(lián)立求出其交點(diǎn)坐標(biāo),最后再利用極坐標(biāo)與直角坐標(biāo)的互化公式即可求出C1與C2交點(diǎn)的極坐標(biāo).
          解答:解:(I)曲線C1的參數(shù)方程式
          x=4+5cost
          y=5+5sint
          (t為參數(shù)),
          得(x-4)2+(y-5)2=25即為圓C1的普通方程,
          即x2+y2-8x-10y+16=0.
          將x=ρcosθ,y=ρsinθ代入上式,得.
          ∴ρ2-8ρcosθ-10ρsinθ+16=0,此即為C1的極坐標(biāo)方程;
          (II)曲線C2的極坐標(biāo)方程為ρ=2sinθ化為極坐標(biāo)方程為:x2+y2-2y=0,
          x2+y2-8x-10y+16=0
          x2+y2-2y=0
          ,解得
          x=1
          y=1
          x=0
          y=2

          ∴C1與C2交點(diǎn)的極坐標(biāo)分別為(
          2
          ,
          π
          4
          ),(2,
          π
          2
          ).
          點(diǎn)評(píng):本題主要考查了參數(shù)方程化成普通方程,點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化.熟練掌握極坐標(biāo)與直角坐標(biāo)的互化公式、兩圓的位置關(guān)系是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          本題(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.
          (1)選修4-2:矩陣與變換
          已知矩陣A=
          33
          cd
          ,若矩陣A屬于特征值6的一個(gè)特征向量為
          α
          =
          1
          1
          ,屬于特征值1的一個(gè)特征向量為
          β
          =
          &-2

          (Ⅰ)求矩陣A;
          (Ⅱ)判斷矩陣A是否可逆,若可逆求出其逆矩陣A-1
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          已知直線的極坐標(biāo)方程為ρsin(θ+
          π
          4
          )=
          2
          2
          ,圓M的參數(shù)方程為
          x=2cosθ
          y=-2+2sinθ
          (其中θ為參數(shù)).
          (Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
          (Ⅱ)求圓M上的點(diǎn)到直線的距離的最小值.
          (3)選修4-5:不等式選講,設(shè)函數(shù)f(x)=|x-1|+|x-a|;
          (Ⅰ)若a=-1,解不等式f(x)≥3;
          (Ⅱ)如果關(guān)于x的不等式f(x)≤2有解,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          A.選修4-1:幾何證明選講
          如圖,△ABC的外接圓的切線AE與BC的延長線相交于點(diǎn)E,∠BAC的平分線與BC
          交于點(diǎn)D.求證:ED2=EB•EC.
          B.選修4-2:矩陣與變換
          求矩陣M=
          -14
          26
          的特征值和特征向量.
          C.選修4-4:坐標(biāo)系與參數(shù)方程
          在以O(shè)為極點(diǎn)的極坐標(biāo)系中,直線l與曲線C的極坐標(biāo)方程分別是ρcos(θ+
          π
          4
          )=
          3
          2
          2
          和ρsin2θ=4cosθ,直線l與曲線C交于點(diǎn).A,B,C,求線段AB的長.
          D.選修4-5:不等式選講
          對(duì)于實(shí)數(shù)x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          選修4-4;坐標(biāo)系與參數(shù)方程
          在直角坐標(biāo)系xOy中,直線L的參數(shù)方程為
          x=3-
          2
          2
          t
          y=
          2
          2
          t
          (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=2
          5
          sinθ

          (Ⅰ)求圓C的直角坐標(biāo)方程;
          (Ⅱ)設(shè)圓C與直線L交于點(diǎn)A,B,若點(diǎn)P的坐標(biāo)為(3,
          5
          ),求|PA|+|PB|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•許昌三模)選修4-4:坐標(biāo)系與參數(shù)方程
          在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
          x=a+4t
          y=-1-2t
          (t為參數(shù))在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),極軸與x軸的非負(fù)半軸重合)中,圓C的方程為ρ=2
          2
          cos(θ+
          π
          4
          ).
          (Ⅰ)求圓心C到直線l的距離;
          (Ⅱ)若直線l被圓C截得的弦長為
          6
          5
          5
          ,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•廣東模擬)(選修4-4:坐標(biāo)系與參數(shù)方程選講)
          在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線C參數(shù)方程為
          x=
          3
          cosθ
          y= sinθ
          (θ為參數(shù)),直線l的極坐標(biāo)方程為ρcos(θ-
          π
          4
          )=2
          2
          .則曲線C上的點(diǎn)到直線l的最大距離是
          3
          2
          3
          2

          查看答案和解析>>

          同步練習(xí)冊(cè)答案