日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=x2﹣1.
          (1)對于任意的1≤x≤2,不等式4m2|f(x)|+4f(m)≤|f(x﹣1)|恒成立,求實數(shù)m的取值范圍;
          (2)若對任意實數(shù)x1∈[1,2].存在實數(shù)x2∈[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,求實數(shù)a的取值范圍.

          【答案】
          (1)解:對于任意的1≤x≤2,不等式4m2|f(x)|+4f(m)≤|f(x﹣1)|恒成立,

          即為4m2(|x2﹣1|+1|≤4+|x2﹣2x|,

          由1≤x≤2,可得4m2 ,

          由g(x)= =4( + 2 ,

          當x=2,即 = 時,g(x)取得最小值,且為1,

          即有4m2≤1,解得﹣ ≤m≤


          (2)解:對任意實數(shù)x1∈[1,2].

          存在實數(shù)x2∈[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,

          可設f(x)在[1,2]的值域為A,h(x)=|2f(x)﹣ax|的值域為B,

          可得AB.

          由f(x)在[1,2]遞增,可得A=[0,3];

          當a<0時,h(x)=|2x2﹣ax﹣2|=2x2﹣ax﹣2,(1≤x≤2),

          在[1,2]遞增,可得B=[﹣a,6﹣2a],

          可得﹣a≤0<3≤6﹣2a,不成立;

          當a=0時,h(x)=2x2﹣2,(1≤x≤2),

          在[1,2]遞增,可得B=[0,6],

          可得0≤0<3≤6,成立;

          當0<a≤2時,由h(x)=0,解得x= >1(負的舍去),

          h(x)在[1, ]遞減,[ ,2]遞增,

          即有h(x)的值域為[0,h(2)],即為[0,6﹣2a],

          由0≤0<3≤6﹣2a,解得0<a≤ ;

          當2<a≤3時,h(x)在[1, ]遞減,[ ,2]遞增,

          即有h(x)的值域為[0,h(2)],即為[0,a],

          由0≤0<3≤a,解得a=3;

          當3<a≤4時,h(x)在[1,2]遞減,可得B=[2a﹣6,a],

          由2a﹣6≤0<3≤a,無解,不成立;

          當4<a≤6時,h(x)在[1, ]遞增,在[ ,2]遞減,可得B=[2a﹣6,2+ ],

          由2a﹣6≤0<3≤2a,不成立;

          當6<a≤8時,h(x)在[1, ]遞增,在[ ,2]遞減,可得B=[a,2+ ],

          由a≤0<3≤2a,不成立;

          當a>8時,h(x)在[1,2]遞增,可得B=[a,2a﹣6],

          AB不成立.

          綜上可得,a的范圍是0≤a≤ 或a=3.


          【解析】(1)由題意可得4m2(|x2﹣1|+1|≤4+|x2﹣2x|,由1≤x≤2,可得4m2 ,運用二次函數(shù)的最值的求法,可得右邊函數(shù)的最小值,解不等式可得m的范圍;(2)f(x)在[1,2]的值域為A,h(x)=|2f(x)﹣ax|的值域為B,由題意可得AB.分別求得函數(shù)f(x)和h(x)的值域,注意討論對稱軸和零點,與區(qū)間的關系,結合單調(diào)性即可得到值域B,解不等式可得a的范圍.
          【考點精析】利用二次函數(shù)的性質(zhì)對題目進行判斷即可得到答案,需要熟知當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=2 ﹣3(ω>0)
          (1)若 是最小正周期為π的偶函數(shù),求ω和θ的值;
          (2)若g(x)=f(3x)在 上是增函數(shù),求ω的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)是定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù),在區(qū)間(﹣∞,0)單調(diào)遞增且f(﹣1)=0.若實數(shù)a滿足 ,則實數(shù)a的取值范圍是(
          A.[1,2]
          B.
          C.(0,2]
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=

          (1)求△ACD的面積;
          (2)若BC=2 ,求AB的長.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,已知平面QBC與直線PA均垂直于Rt△ABC所在平面,且PA=AB=AC.

          (1)求證:PA∥平面QBC;
          (2)PQ⊥平面QBC,求二面角Q﹣PB﹣A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】若存在x0∈[﹣1,1]使得不等式| ﹣a +1|≤ 成立,則實數(shù)a的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如表資料:

          日期

          11月1日

          11月2日

          11月3日

          11月4日

          11月5日

          溫差x(℃)

          8

          11

          12

          13

          10

          發(fā)芽數(shù)y(顆)

          16

          25

          26

          30

          23

          設農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
          (注: ,
          (1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
          (2)若選取的是11月1日與11月5日的兩組數(shù)據(jù),請根據(jù)11月2日至11月4日的數(shù)據(jù),求出y關于x的線性回歸方程 ;
          (3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,四邊形是邊長為的正方形,平面平面 ,

          (Ⅰ)求證: 平面;

          )求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】水培植物需要一種植物專用營養(yǎng)液,已知每投放個單位的營養(yǎng)液,它在水中釋放的濃度 (/升)隨著時間 ()變化的函數(shù)關系式近似為,其中,若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當水中營養(yǎng)液的濃度不低于4(/)時,它才能有效.

          1若只投放一次2個單位的營養(yǎng)液,則有效時間最多可能達到幾天?

          2若先投放2個單位的營養(yǎng)液,3天后再投放個單位的營養(yǎng)液,要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求的最小值.

          查看答案和解析>>

          同步練習冊答案