日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知左焦點(diǎn)為F(-1,0)的橢圓過(guò)點(diǎn)E(1,).過(guò)點(diǎn)P(1,1)分別作斜率為k1,k2的橢圓的動(dòng)弦AB,CD,設(shè)M,N分別為線段AB,CD的中點(diǎn).
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)若P為線段AB的中點(diǎn),求k1;
          (3)若k1+k2=1,求證直線MN恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

          (1) +=1   (2) -   (3)證明見解析  (0,-

          解析解:(1)依題設(shè)c=1,且右焦點(diǎn)F′(1,0).
          所以2a=|EF|+|EF′|=+
          =2,
          b2=a2-c2=2,
          故所求的橢圓的標(biāo)準(zhǔn)方程為+=1.
          (2)設(shè)A(x1,y1),B(x2,y2),
          +=1,①
          +=1.②
          ②-①,得+=0.
          所以k1==-=-=-.
          (3)依題設(shè),k1≠k2.
          設(shè)M(xM,yM),
          又直線AB的方程為y-1=k1(x-1),
          即y=k1x+(1-k1),
          亦即y=k1x+k2,
          代入橢圓方程并化簡(jiǎn)得(2+3)x2+6k1k2x+3-6=0.
          于是,xM=,yM=,
          同理,xN=,yN=.
          當(dāng)k1k2≠0時(shí),
          直線MN的斜率k==
          =.
          直線MN的方程為y-=(x-),
          即y=x+(·+),
          亦即y=x-.
          此時(shí)直線過(guò)定點(diǎn)(0,-).
          當(dāng)k1k2=0時(shí),直線MN即為y軸,
          此時(shí)亦過(guò)點(diǎn)(0,-).
          綜上,直線MN恒過(guò)定點(diǎn),且坐標(biāo)為(0,-).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知雙曲線的離心率等于2,且經(jīng)過(guò)點(diǎn)M(-2,3),求雙曲線的標(biāo)準(zhǔn)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在平面直角坐標(biāo)系xOy中,橢圓C的中心在坐標(biāo)原點(diǎn)O,右焦點(diǎn)為F.若C的右準(zhǔn)線l的方程為x=4,離心率e=.

          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)設(shè)點(diǎn)P為準(zhǔn)線l上一動(dòng)點(diǎn),且在x軸上方.圓M經(jīng)過(guò)O、F、P三點(diǎn),求當(dāng)圓心M到x軸的距離最小時(shí)圓M的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,已知拋物線C1:x2+by=b2經(jīng)過(guò)橢圓C2:+=1(a>b>0)的兩個(gè)焦點(diǎn).

          (1)求橢圓C2的離心率;
          (2)設(shè)點(diǎn)Q(3,b),又M,N為C1與C2不在y軸上的兩個(gè)交點(diǎn),若△QMN的重心在拋物線C1上,求C1和C2的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知橢圓C1的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為F1(-2,0),F2(2,0),點(diǎn)A(2,3)在橢圓C1上,過(guò)點(diǎn)A的直線L與拋物線C2:x2=4y交于B,C兩點(diǎn),拋物線C2在點(diǎn)B,C處的切線分別為l1,l2,且l1與l2交于點(diǎn)P.
          (1)求橢圓C1的方程;
          (2)是否存在滿足|PF1|+|PF2|=|AF1|+|AF2|的點(diǎn)P?若存在,指出這樣的點(diǎn)P有幾個(gè)(不必求出點(diǎn)P的坐標(biāo));若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖所示,設(shè)P是拋物線C1:x2=y上的動(dòng)點(diǎn),過(guò)點(diǎn)P作圓C2:x2+(y+3)2=1的兩條切線,交直線l:y=-3于A、B兩點(diǎn).

          (1)求圓C2的圓心M到拋物線C1準(zhǔn)線的距離;
          (2)是否存在點(diǎn)P,使線段AB被拋物線C1在點(diǎn)P處的切線平分?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          設(shè)橢圓+=1(a>b>0)的左焦點(diǎn)為F,離心率為,過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為.
          (1)求橢圓的方程;
          (2)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若·+·=8,求k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,橢圓過(guò)點(diǎn)P(1, ),其左、右焦點(diǎn)分別為F1,F2,離心率e=,M,N是直線x=4上的兩個(gè)動(dòng)點(diǎn),且·=0.

          (1)求橢圓的方程;
          (2)求|MN|的最小值;
          (3)以MN為直徑的圓C是否過(guò)定點(diǎn)?請(qǐng)證明你的結(jié)論。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知橢圓:的離心率,原點(diǎn)到過(guò)點(diǎn),的直線的距離是.
          (1)求橢圓的方程;
          (2)若橢圓上一動(dòng)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,求 的取值范圍;
          (3)如果直線交橢圓于不同的兩點(diǎn),,且,都在以為圓心的圓上,求的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案