日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          (2012•韶關一模)三棱柱ABC-A1B1C1的直觀圖及三視圖(主視圖和俯視圖是正方形,左側圖是等腰直角三角形)如圖,D為AC的中點.
          (1)求證:AB1∥平面BDC1;
          (2)求證:A1C⊥平面BDC1;
          (3)求二面角A-BC1-D的正切值.
          分析:由三視圖可知,幾何體為直三棱柱ABC-A1B1C1,側面B1C1CB為邊長為2的正方形,底面ABC是等腰直角三角形,AB⊥BC,AB=BC=2
          (1)證明AB1∥平面BDC1,證明OD∥AB1即可;
          (2)證明A1C⊥平面BDC1,利用線面垂直的判定,只需證明BD⊥A1C,B1C⊥A1C;
          (3)補成正方體,則∠O1OS為二面角的平面角,利用正切函數可得結論.
          解答:(1)證明:由三視圖可知,幾何體為直三棱柱ABC-A1B1C1,側面B1C1CB為邊長為2的正方形,底面ABC是等腰直角三角形,AB⊥BC,AB=BC=2…(2分)
          連B1C交BC1于O,連接OD,在△CAB1中,O,D分別是B1C,AC的中點,∴OD∥AB1,
          而AB1?平面BDC1,OD?平面BDC1,∴AB1∥平面BDC1;…..(4分)
          (2)證明:直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,BD?平面ABC,∴AA1⊥BD,
          ∵AB=BC=2,D為AC的中點,∴BD⊥AC,
          ∴BD⊥平面AA1C1C,∴BD⊥A1C①…..(6分)
          又A1B1⊥B1C1,A1B1⊥B1B,∴A1B1⊥平面B1C1CB
          ∴A1B1⊥B1C,
          在正方形B1C1CB中,BC1⊥B1C,
          ∵B1C,A1B1?平面A1B1C,B1C∩A1B1?=B1,
          ∴B1C⊥平面A1B1C,
          ∴B1C⊥A1C②…..(8分)
          由①②,又BD∩BC1=B,BD,BC1?平面BDC1
          ∴A1C⊥平面BDC1;…9
          (3)解:如圖補成正方體,則∠O1OS為二面角的平面角,∵O1O=2,O1S=
          2
          ,∴tan∠O1OS=
          2
          2
          …..14
          點評:本題考查線面平行的判定,及線面垂直的判定,考查面面角,解題的關鍵是掌握線面平行的判定,及線面垂直的判定定理.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          (2012•韶關一模)下列函數在其定義域內既是奇函數又是增函數的是( 。

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2012•韶關一模)已知函數f(x)=2cos2x+2
          3
          sinxcosx-1

          (1)求f(x)的周期和單調遞增區(qū)間;
          (2)說明f(x)的圖象可由y=sinx的圖象經過怎樣變化得到.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2012•韶關一模)平面向量
          a
          、
          b
          的夾角為60°,
          a
          =(2,0),|
          b
          |=1,則|
          a
          +
          b
          |=( 。

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2012•韶關一模)
          21-i
          +i3
          的值等于
          1
          1

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2012•韶關一模)設拋物線C的方程為x2=4y,M(x0,y0)為直線l:y=-m(m>0)上任意一點,過點M作拋物線C的兩條切線MA,MB,切點分別為A,B.
          (1)當M的坐標為(0,-1)時,求過M,A,B三點的圓的方程,并判斷直線l與此圓的位置關系;
          (2)求證:直線AB恒過定點(0,m).

          查看答案和解析>>

          同步練習冊答案