日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知四棱錐P-ABCD的底面ABCD是菱形;PA⊥平面ABCD,PA=AD=AC,點(diǎn)F為PC的中點(diǎn).
          (Ⅰ)求證:PA∥平面BFD;
          (Ⅱ)求二面角P-BF-D的大。
          分析:(Ⅰ)欲證PA∥平面BFD,根據(jù)直線與平面平行的判定定理可知只需證PA與平面BFD內(nèi)一直線平行,連接AC,BD與AC交于點(diǎn)O,連接OF,根據(jù)中位線可知OF∥PA,OF?平面BFD,PA?平面BFD,滿足定理所需條件;
          (Ⅱ)根據(jù)條件可知PA⊥AC,AC⊥BD.OF∩BD=O,滿足線面垂直的判定定理,則AC⊥平面BDF,作OH⊥BF,垂足為H,連接CH,則CH⊥BF,
          所以∠OHC為二面角PD⊥的平面角.在Rt△FOB中,求出OH,從而求出∠OHC的正切值,最后根據(jù)二面角C-BF-D的平面角與二面角P-BF-D的平面角互補(bǔ)求出所求即可.
          解答:證明:(Ⅰ)連接AC,BD與AC交于點(diǎn)O,連接OF.
          ∵ABCD是菱形,∴O是AC的中點(diǎn).
          ∵點(diǎn)F為PC的中點(diǎn),∴OF∥PA.
          ∵OF?平面BFD,PA?平面BFD,∴PA∥平面BFD.
          (Ⅱ)解:∵PA⊥平面ABCD,AC?平面ABCD,∴PA⊥AC.
          ∵OF∥PA,∴OF⊥AC.∵ABCD是菱形,∴AC⊥BD.∵OF∩BD=O,
          ∴AC⊥平面BDF.
          作OH⊥BF,垂足為H,連接CH,則CH⊥BF,
          所以∠OHC為二面角PD⊥的平面角.ABCDPA=AD=AC,
          OF=
          1
          2
          PA,BO=
          3
          2
          PA
          ,BF=
          BO2+OF2
          =PA

          在Rt△FOB中,OH=
          OF?BO
          BF
          =
          3
          4
          PA,
          tan∠OHC=
          OC
          OH
          =
          1
          2
          PA
          3
          4
          PA
          =
          2
          3
          3

          ∴二面角C-BF-D的大小為arctan
          2
          3
          3

          ∵二面角C-BF-D的平面角與二面角P-BF-D的平面角互補(bǔ)
          ∴二面角P-BF-D的大小為π-arctan
          2
          3
          3
          點(diǎn)評(píng):求二面角,關(guān)鍵是構(gòu)造出二面角的平面角,常用的方法有利用三垂線定理和通過求法向量的夾角,然后再將其轉(zhuǎn)化為二面角的平面角,屬于綜合題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點(diǎn),F(xiàn)為AD的中點(diǎn).
          (Ⅰ)證明EF∥平面PAB;
          (Ⅱ)證明EF⊥平面PBC;
          (III)點(diǎn)M是四邊形ABCD內(nèi)的一動(dòng)點(diǎn),PM與平面ABCD所成的角始終為45°,求動(dòng)直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,側(cè)面PBC⊥底面ABCD,O是BC的中點(diǎn).
          (1)求證:PO⊥平面ABCD;
          (2)求證:PA⊥BD
          (3)若二面角D-PA-O的余弦值為
          10
          5
          ,求PB的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E為BC中點(diǎn),AE與BD交于O點(diǎn),AB=BC=2CD=2,BD⊥PE.
          (1)求證:平面PAE⊥平面ABCD; 
          (2)若直線PA與平面ABCD所成角的正切值為
          5
          2
          ,PO=2,求四棱錐P-ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是線段PC上一點(diǎn),PC⊥平面BDE.
          (Ⅰ)求證:BD⊥平面PAB.
          (Ⅱ)若PA=4,AB=2,BC=1,求直線AC與平面PCD所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省濟(jì)寧一中高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點(diǎn),F(xiàn)為AD的中點(diǎn).
          (Ⅰ)證明EF∥平面PAB;
          (Ⅱ)證明EF⊥平面PBC;
          (III)點(diǎn)M是四邊形ABCD內(nèi)的一動(dòng)點(diǎn),PM與平面ABCD所成的角始終為45°,求動(dòng)直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案