日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系xOy中,點(diǎn)_P到定點(diǎn)F(-1,0)的距離的兩倍和它到定直線x=-4的距離相等.
          (Ⅰ)求點(diǎn)P的軌跡C的方程,并說明軌跡C是什么圖形;
          (Ⅱ)已知點(diǎn)Q(l,1),直線l:y=x+m(m∈R)和軌跡C相交于A、B兩點(diǎn),是否存在實(shí)數(shù)m,使△ABQ的面積S最大?若存在,求出m的值;若不存在,說明理由.
          分析:(I)根據(jù)直接法求軌跡方程求解;
          (II)假設(shè)存在,利用直線與圓錐曲線相交弦長公式,構(gòu)造三角形面積關(guān)于m的函數(shù),利用函數(shù)求最值的方法求解即可.
          解答:解:(Ⅰ)設(shè)P(x,y),根據(jù)題意,2|PF|=d.
          即:2
          (x+1)2+y2
          =|4+x|,
          平方化簡得3x2+4y2=12,即
          x2
          4
          +
          y2
          3
          =1

          點(diǎn)P的軌跡是長軸、短軸長分別為4、2
          3
          ,焦點(diǎn)在x軸上的橢圓.
          (Ⅱ)設(shè)直線L與軌跡C的交點(diǎn)為A(x1,y1),B(x2,y2)兩點(diǎn).
          聯(lián)立方程得:
          y=x+m
          x2
          4
          +
          y2
          3
          =1
          ⇒7x2+8mx+4m2-12=0,
          x1+x2=-
          8m
          7
          ,x1x2=
          4m2-12
          7
          ,
          △=64m2-4×7×4(m2-3)=48(7-m2)>0
          |AB|=
          2[(x1+x2)2-4x1x2]
          =
          4
          6
          7
          ×
          7-m2

          點(diǎn)Q(1,1)到L:y=x+m的距離為
          |m|
          2

          ∴S=
          1
          2
          ×
          4
          6
          7
          ×
          7-m2
          ×
          |m|
          2
          =
          2
          3
          7
          ×
          (7-m2)m2
          2
          3
          7
          ×
          7-m2+m2
          2
          =
          3

          當(dāng)且僅當(dāng)7-m2=m2,即m=±
          14
          2
          時(shí),滿足△=48(7-m2)>0,
          ∴存在實(shí)數(shù)m=±
          14
          2
          ,使△ABQ的面積S最大,最大值為
          3
          點(diǎn)評(píng):本題考查直接法求軌跡方程及直線與圓錐曲線的位置關(guān)系.存在性問題的常見解法:假設(shè)存在,依據(jù)題設(shè)條件求出,說明存在;求不出或得出明顯矛盾,說明不存在.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
          2
          的圓C經(jīng)過坐標(biāo)原點(diǎn)O,橢圓
          x2
          a2
          +
          y2
          9
          =1(a>0)
          與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
          (1)求圓C的方程;
          (2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
          3
          5
          ,點(diǎn)B的縱坐標(biāo)是
          12
          13
          ,則sin(α+β)的值是
          16
          65
          16
          65

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
          x2
          m
          +
          y2
          3
          =1
          的離心率為
          1
          2
          ,則m的值為
          4
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
          3t
          ,0)
          ,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
          1
          2

          (1)求橢圓C的方程;
          (2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
          (3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
          16
          7
          相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案