日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x.

          (1)求f(x)的解析式,并畫出f(x)的圖象;

          (2)設(shè)g(x)=f(x)-k,利用圖象討論:當(dāng)實(shí)數(shù)k為何值時(shí),函數(shù)g(x)有一個(gè)零點(diǎn)?二個(gè)零點(diǎn)?三個(gè)零點(diǎn)?

          【答案】(1) f(x)=,函數(shù)圖象略

          (2)當(dāng)k<-1k>1時(shí),有1個(gè)零點(diǎn)當(dāng)k=-1k=1時(shí),2個(gè)零點(diǎn);

          當(dāng)-1<k<1時(shí),3個(gè)零點(diǎn).

          【解析】

          試題分析:(Ⅰ)先設(shè)x0可得﹣x0,則f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x,由函數(shù)f(x)為奇函數(shù)可得f(x)=﹣f(﹣x),可求,結(jié)合二次函數(shù)的圖象可作出f(x)的圖象

          (II)由g(x)=f(x)﹣k=0可得f(x)=k,結(jié)合函數(shù)的圖象可,要求g(x)=f(x)﹣k的零點(diǎn)個(gè)數(shù),只要結(jié)合函數(shù)的圖象,判斷y=f(x)與y=k的交點(diǎn)個(gè)數(shù)

          試題解析:

          (Ⅰ)當(dāng)x0時(shí),f(x)=x2﹣2x.

          設(shè)x0可得﹣x0,則f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x

          ∵函數(shù)f(x)為奇函數(shù),則f(x)=﹣f(﹣x)=﹣x2﹣2x

          函數(shù)的圖象如圖所示

          (II)由g(x)=f(x)﹣k=0可得f(x)=k

          結(jié)合函數(shù)的圖象可知

          ①當(dāng)k﹣1k1時(shí),y=ky=f(x)的圖象有1個(gè)交點(diǎn),即g(x)=f(x)﹣k1個(gè)零點(diǎn)

          ②當(dāng)k=﹣1k=1時(shí),y=ky=f(x)有2個(gè)交點(diǎn),即g(x)=f(x)﹣k2個(gè)零點(diǎn)

          ③當(dāng)﹣1k1時(shí),y=ky=f(x)有3個(gè)交點(diǎn),即g(x)=f(x)﹣k3個(gè)零點(diǎn)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)為實(shí)數(shù),函數(shù)

          (1)若,求的取值范圍;

          (2)討論的單調(diào)性;

          (3)當(dāng)時(shí),討論在區(qū)間內(nèi)的零點(diǎn)個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 的上下兩個(gè)焦點(diǎn)分別為,過點(diǎn)軸垂直的直線交橢圓兩點(diǎn), 的面積為,橢圓的離心率為

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)已知為坐標(biāo)原點(diǎn),直線軸交于點(diǎn),與橢圓交于兩個(gè)不同的點(diǎn),若,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù).

          1)當(dāng)時(shí),求函數(shù)的最大值;

          2)令,其圖象上存在一點(diǎn),使此處切線的斜率,求實(shí)數(shù)的取值范圍;

          (3)當(dāng) 時(shí),方程有唯一實(shí)數(shù)解,求正數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)求函數(shù)的定義域;

          (2)若函數(shù)的最小值為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正方形的中心為點(diǎn), 邊所在的直線方程為.

          1邊所在的直線方程和正方形外接圓的方程;

          2若動(dòng)圓過點(diǎn),且與正方形外接圓外切,求動(dòng)圓圓心的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線 所圍成封閉圖形面積為,曲線是以曲線與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓, 離心率為. 平面上的動(dòng)點(diǎn)為橢圓外一點(diǎn),且過點(diǎn)

          引橢圓的兩條切線互相垂直.

          1求曲線的方程;

          (2)求動(dòng)點(diǎn)的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知分別是橢圓的左、右焦點(diǎn),離心率為, 分別是橢圓的上、下頂點(diǎn), .

          (1)求橢圓的方程;

          (2)若直線與橢圓交于相異兩點(diǎn),且滿足直線的斜率之積為,證明:直線恒過定點(diǎn),并采定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)數(shù)列{an},{bn},{cn}滿足a1=a,b1=1,c1=3,對(duì)于任意n∈N* , 有bn+1= ,cn+1=
          (1)求數(shù)列{cn﹣bn}的通項(xiàng)公式;
          (2)若數(shù)列{an}和{bn+cn}都是常數(shù)項(xiàng),求實(shí)數(shù)a的值;
          (3)若數(shù)列{an}是公比為a的等比數(shù)列,記數(shù)列{bn}和{cn}的前n項(xiàng)和分別為Sn和Tn , 記Mn=2Sn+1﹣Tn , 求Mn 對(duì)任意n∈N*恒成立的a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案