日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點為F,橢圓C與直線y=x在第一象限的交點為P,橢圓C在P點的切線為l,過原點O作直線平行于l交FP于M,則|PM|的長為( 。
          分析:為方便計算,本選擇題利用特殊法解決.不妨設(shè)橢圓橢圓C:
          x2
          2
          +
          y2
          1
          =1
          ,分別求出它的左焦點,橢圓C與直線y=x在第一象限的交點,橢圓C在P點的切線,過原點O作直線平行于l交FP于M的坐標,最后利用兩點間的距離公式求出|PM|的長即可得出正確選項.
          解答:解:設(shè)橢圓橢圓C:
          x2
          2
          +
          y2
          1
          =1
          ,
          它的左焦點為F(-1,0),
          橢圓C與直線y=x在第一象限的交點為P(
          6
          3
          ,
          6
          3
          ),
          橢圓C在P點的切線為l:
          6
          3
          x
           
          2
          +
          6
          y
          3
          =1
          ,即x+2y=
          6

          過原點O作直線平行于l:x+2y=0,
          交FP于M(
          6-
          6
          15
          2
          6
          - 12
          15
          。,又P(
          6
          3
          ,
          6
          3
          ),
          則|PM|的長為
          2
          =a.
          故選B.
          點評:本小題主要考查橢圓的簡單性質(zhì)、兩直線的位置關(guān)系、直線的交點等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          1
          2
          ,且經(jīng)過點P(1,
          3
          2
          )

          (1)求橢圓C的方程;
          (2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的短軸長為2
          3
          ,右焦點F與拋物線y2=4x的焦點重合,O為坐標原點.
          (1)求橢圓C的方程;
          (2)設(shè)A、B是橢圓C上的不同兩點,點D(-4,0),且滿足
          DA
          DB
          ,若λ∈[
          3
          8
          ,
          1
          2
          ],求直線AB的斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)經(jīng)過點A(1,
          3
          2
          ),且離心率e=
          3
          2

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點,且以MN為直徑的圓經(jīng)過坐標原點O.若存在,求出直線l的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•房山區(qū)二模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的長軸長是4,離心率為
          1
          2

          (Ⅰ)求橢圓方程;
          (Ⅱ)設(shè)過點P(0,-2)的直線l交橢圓于M,N兩點,且M,N不與橢圓的頂點重合,若以MN為直徑的圓過橢圓C的右頂點A,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的短軸長為2,離心率為
          2
          2
          ,設(shè)過右焦點的直線l與橢圓C交于不同的兩點A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
          AP+BQ
          PQ
          ,若直線l的斜率k≥
          3
          ,則λ的取值范圍為
           

          查看答案和解析>>

          同步練習冊答案