(本小題滿分13分)
已知,
,
,…,
.
(Ⅰ)請(qǐng)寫(xiě)出的表達(dá)式(不需證明);
(Ⅱ)求的極小值
;
(Ⅲ)設(shè),
的最大值為
,
的最小值為
,試求
的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題共13分)設(shè)k∈R,函數(shù) ,
,x∈R.試討論函數(shù)F(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題16分)已知函數(shù)滿足滿足
;
(1)求的解析式及單調(diào)區(qū)間;
(2)若,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
已知函數(shù)(
),
.
(Ⅰ)當(dāng)時(shí),解關(guān)于
的不等式:
;
(Ⅱ)當(dāng)時(shí),記
,過(guò)點(diǎn)
是否存在函數(shù)
圖象的切線?若存在,有多少條?若不存在,說(shuō)明理由;
(Ⅲ)若是使
恒成立的最小值,對(duì)任意
,
試比較與
的大小(常數(shù)
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知函數(shù)
(1)判斷的單調(diào)性并證明;
(2)若滿足
,試確定
的取值范圍。
(3)若函數(shù)對(duì)任意
時(shí),
恒成立,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
(1)當(dāng)時(shí), 若
有
個(gè)零點(diǎn), 求
的取值范圍;
(2)對(duì)任意, 當(dāng)
時(shí)恒有
, 求
的最大值, 并求此時(shí)
的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(Ⅰ)若在
處取得極值,求
的值;
(Ⅱ)討論的單調(diào)性;
(Ⅲ)證明:為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)若為
的極值點(diǎn),求實(shí)數(shù)
的值;
(2)若在
上為增函數(shù),求實(shí)數(shù)
的取值范圍;
(3)當(dāng)時(shí),方程
有實(shí)根,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù).(
).
(1)當(dāng)時(shí),求函數(shù)
的極值;
(2)若對(duì),有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com