日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知首項(xiàng)為負(fù)的數(shù)列{an}中,相鄰兩項(xiàng)不為相反數(shù),且前n項(xiàng)和為Sn=數(shù)學(xué)公式
          (Ⅰ)證明數(shù)列{an}為等差數(shù)列;
          (Ⅱ)設(shè)數(shù)列數(shù)學(xué)公式的前n項(xiàng)和為Tn,對一切正整數(shù)n都有Tn≥M成立,求M的最大值.

          解:(I)∵Sn=

          ∴(an+1-an-2)(an+1-an)=0
          ∵相鄰兩項(xiàng)不為相反數(shù)
          ∴an+1-an=2
          ∴數(shù)列{an}為公差為2的等差數(shù)列;

          (II)由(I)知an=2n-7


          因?yàn)門n在[1,2][3,+∝)上是增函數(shù).
          且T1=
          要使得對一切正整數(shù)n都有Tn≥M成立
          只要M≤-
          ∴M的最大值為
          分析:(I)由Sn=.結(jié)合通項(xiàng)與前n項(xiàng)和間的關(guān)系公式,求得(an+1-an-2)(an+1-an)=0
          再由相鄰兩項(xiàng)不為相反數(shù),有an+1-an=2符合等差數(shù)列的定義.
          (II)由(I)知an=2n-7,將變形,再用裂項(xiàng)相消法求得Tn,再通過單調(diào)性來求得其最小值即可.
          點(diǎn)評:本題主要考查兩個(gè)問題,一是判斷數(shù)列,方法一般是定義法或通項(xiàng)公式法,二是求前n項(xiàng)和,常用方法是倒序相加法,錯(cuò)位相減法,裂項(xiàng)相消法等.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2010•瀘州二模)已知首項(xiàng)為負(fù)的數(shù)列{an}中,相鄰兩項(xiàng)不為相反數(shù),且前n項(xiàng)和為Sn=
          1
          4
          (an-5)(an+7)

          (Ⅰ)證明數(shù)列{an}為等差數(shù)列;
          (Ⅱ)設(shè)數(shù)列{
          1
          anan+1
          }
          的前n項(xiàng)和為Tn,對一切正整數(shù)n都有Tn≥M成立,求M的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南通市通州區(qū)高三4月查漏補(bǔ)缺專項(xiàng)檢測數(shù)學(xué)試卷(解析版) 題型:解答題

          已知數(shù)列單調(diào)遞增,且各項(xiàng)非負(fù),對于正整數(shù),若任意的,),仍是中的項(xiàng),則稱數(shù)列為“項(xiàng)可減數(shù)列”.

          (1)已知數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,且數(shù)列是“項(xiàng)可減數(shù)

          列”,試確定的最大值;

          (2)求證:若數(shù)列是“項(xiàng)可減數(shù)列”,則其前項(xiàng)的和;

          (3)已知是各項(xiàng)非負(fù)的遞增數(shù)列,寫出(2)的逆命題,判斷該逆命題的真假,

          并說明理由.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列單調(diào)遞增,且各項(xiàng)非負(fù).對于正整數(shù),若任意的,仍是中的項(xiàng),則稱數(shù)列為“項(xiàng)可減數(shù)列”.

          (Ⅰ)已知數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,且數(shù)列是“項(xiàng)可減數(shù)列”,試確定的最大值.

          (Ⅱ)求證:若數(shù)列是“項(xiàng)可減數(shù)列”,則其前項(xiàng)的和.

          (Ⅲ)已知是各項(xiàng)非負(fù)的遞增數(shù)列,寫出(Ⅱ)的逆命題,判斷該逆命題的真假,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本小題滿分16分)

          已知數(shù)列單調(diào)遞增,且各項(xiàng)非負(fù).對于正整數(shù),若任意的,仍是中的項(xiàng),則稱數(shù)列為“項(xiàng)可減數(shù)列”.

          (Ⅰ)已知數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,且數(shù)列是“項(xiàng)可減數(shù)列”,試確定的最大值.

          (Ⅱ)求證:若數(shù)列是“項(xiàng)可減數(shù)列”,則其前項(xiàng)的和.

          (Ⅲ)已知是各項(xiàng)非負(fù)的遞增數(shù)列,寫出(Ⅱ)的逆命題,判斷該逆命題的真假,并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案