日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】一艘輪船在航行中的燃料費和它的速度的立方成正比,已知在速度為每小時10公里時的燃料費是每小時6元,而其他與速度無關(guān)的費用是每小時96元,問此輪船以何種速度航行時,能使行駛每公里的費用總和最?

          【答案】解:設(shè)船速度為x(x>0)時,燃料費用為Q元,則Q=kx3 ,
          由6=k×103可得 ,∴ ,
          ∴總費用 ,
          ,令y′=0得x=20,
          當(dāng)x∈(0,20)時,y′<0,此時函數(shù)單調(diào)遞減,
          當(dāng)x∈(20,+∞)時,y′>0,此時函數(shù)單調(diào)遞增,
          ∴當(dāng)x=20時,y取得最小值,
          答:此輪船以20公里/小時的速度使行駛每公里的費用總和最。
          【解析】根據(jù)題意建立相應(yīng)的函數(shù)模型是解決本題的關(guān)鍵.建立起函數(shù)的模型之后,根據(jù)函數(shù)的類型選擇合適的方法求解相應(yīng)的最值問題,充分發(fā)揮導(dǎo)數(shù)的工具作用.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,底面為矩形, , 的中點。

          1)證明: 平面;

          2)設(shè) ,三棱錐的體積 ,求A到平面PBC的距離。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=(x2+ax+a)ex , (a為常數(shù),e為自然對數(shù)的底).
          (1)當(dāng)a=0時,求f′(2);
          (2)若f(x)在x=0時取得極小值,試確定a的取值范圍;
          (3)在(2)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(a),將a換元為x,試判斷曲線y=g(x)是否能與直線3x﹣2y+m=0(m為確定的常數(shù))相切,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):

          x

          2

          4

          5

          6

          8

          y

          30

          40

          50

          60

          70



          (1)畫出散點圖;
          (2)求線性回歸方程;
          (3)預(yù)測當(dāng)廣告費支出為7百萬元時的銷售額.參考公式:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知直線與曲線在第一象限和第三象限分別交于點和點,分別由點、軸作垂線,垂足分別為,記四邊形的面積為S.

          求出點、的坐標(biāo)及實數(shù)的取值范圍;

          當(dāng)取何值時,S取得最小值,并求出S的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,已知PA與⊙O相切,A為切點,PBC為割線,弦CDAP,AD,BC相交于E點,FCE上一點,且DE2EF·EC.

          (1)求證:∠P=∠EDF;

          (2)求證:CE·EBEF·EP;

          (3)若CEBE=3∶2,DE=6,EF=4,求PA的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)=sin2x+2 cos2x﹣ ,函數(shù)g(x)=mcos(2x﹣ )﹣2m+3(m>0),若存在x1 , x2∈[0, ],使得f(x1)=g(x2)成立,則實數(shù)m的取值范圍是(
          A.(0,1]
          B.[1,2]
          C.[ ,2]
          D.[ ]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,且橢圓上一點與橢圓左右兩個焦點構(gòu)成的三角形周長為.

          (1)求橢圓的方程;

          (2)如圖,設(shè)點為橢圓上任意一點,直線和橢圓交于兩點,且直線軸分別交于兩點,求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=sin(ωx+φ) 的最小正周期為π,
          (1)求當(dāng)f(x)為偶函數(shù)時φ的值;
          (2)若f(x)的圖象過點( , ),求f(x)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          同步練習(xí)冊答案