日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)fx)=xx-1)(x-2)…(x-100),則f′(0)等于( 。

          A.100

          B.0

          C.100×99×98×…×3×2×1

          D.1

          解析:fx)=x[(x-1)(x-2)(x-3)…(x-100)]?

          f′(x)=(x-1)(x-2)(x-3)…(x-100)+x·[(x-1)(x-2)(x-3)…(x-100)]′,?

          f′(0)=(-1)(-2)(-3)…(-100)+0=1×2×3×…×100.故選C.

          答案:C

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年浙江省溫州市十校聯(lián)合體高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          設(shè)f(x)是定義在R上的奇函數(shù),g(x)與f(x)的圖象關(guān)于直線x=1對(duì)稱,若g(x)=a(x-2)-(x-2)3
          (1)求f(x)的解析式;
          (2)當(dāng)x=1時(shí),f(x)取得極值,證明:對(duì)任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立;
          (3)若f(x)是[1,+∞)上的單調(diào)函數(shù),且當(dāng)x≥1,f(x)≥1時(shí),有f[f(x)]=x,求證:f(x)=x

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市房山區(qū)周口店中學(xué)高三(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          設(shè)f(x)是定義在R上的奇函數(shù),g(x)與f(x)的圖象關(guān)于直線x=1對(duì)稱,若g(x)=a(x-2)-(x-2)3
          (1)求f(x)的解析式;
          (2)當(dāng)x=1時(shí),f(x)取得極值,證明:對(duì)任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立;
          (3)若f(x)是[1,+∞)上的單調(diào)函數(shù),且當(dāng)x≥1,f(x)≥1時(shí),有f[f(x)]=x,求證:f(x)=x

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年浙江省高考數(shù)學(xué)沖刺試卷3(理科)(解析版) 題型:解答題

          設(shè)f(x)是定義在R上的奇函數(shù),g(x)與f(x)的圖象關(guān)于直線x=1對(duì)稱,若g(x)=a(x-2)-(x-2)3
          (1)求f(x)的解析式;
          (2)當(dāng)x=1時(shí),f(x)取得極值,證明:對(duì)任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立;
          (3)若f(x)是[1,+∞)上的單調(diào)函數(shù),且當(dāng)x≥1,f(x)≥1時(shí),有f[f(x)]=x,求證:f(x)=x

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年廣東省高考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

          設(shè)f(x),g(x),h(x)是R上的任意實(shí)值函數(shù),如下定義兩個(gè)函數(shù)(f°g)(x)和(x)對(duì)任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
          A.((f°g)•h)(x)=°)(x)
          B.°h)(x)=((f°h)•(g°h))(x)
          C.((f°g)°h)(x)=((f°h)°(g°h))(x)
          D.•h)(x)=•)(x)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案