日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】現(xiàn)有4個(gè)人參加某娛樂活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇,為增加趣味性,約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

          (1) 求出4個(gè)人中恰有2個(gè)人去 參加甲游戲的概率;

          (2)求這4個(gè)人中去參加甲游戲人數(shù)大于去參加乙游戲的人數(shù)的概率;

          (3)用分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望

          【答案】18:27

          (2)1:9

          (3) 的分布列是


          0

          2

          4





          【解析】試題分析:依題意,這4個(gè)人中,每個(gè)人去參加甲游戲的概率為,去參加乙游戲的人數(shù)的概率為設(shè)4個(gè)人中恰有i人去參加甲游戲為事件,故;()這4個(gè)人中恰有2人去參加甲游戲的概率為PA2);()設(shè)4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲為事件B,則B=A3A4,利用互斥事件的概率公式可求;(ξ的所有可能取值為0,2,4,由于A1A3互斥,A0A4互斥,求出相應(yīng)的概率,可得ξ的分布列與數(shù)學(xué)期望.

          試題解析:解:依題意,這4個(gè)人中,每個(gè)人去參加甲游戲的概率為,去參加乙游戲的概率為.設(shè)4個(gè)人中恰有i人去參加甲游戲為事件(i0,1,2,3,4),則

          )這4個(gè)人中恰有2人去參加甲游戲的概率3

          )設(shè)4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)為事件B,則,

          由于互斥,故

          所以,這4個(gè)人去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為7

          ξ的所有可能取值為0,2,4.由于互斥,互斥,故

          ,

          。

          所以ξ的分布列是

          ξ

          0

          2

          4

          P




          隨機(jī)變量ξ的數(shù)學(xué)期望12.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知6只小白鼠有1只被病毒感染,需要通過對其化驗(yàn)病毒來確定是否感染.下面是兩種化驗(yàn)方案:方案甲:逐個(gè)化驗(yàn),直到能確定感染為止.方案乙:將6只分為兩組,每組三個(gè),并將它們混合在一起化驗(yàn),若存在病毒,則表明感染在這三只當(dāng)中,然后逐個(gè)化驗(yàn),直到確定感染為止;若結(jié)果不含病毒,則在另外一組中逐個(gè)進(jìn)行化驗(yàn).

          (1)求依據(jù)方案乙所需化驗(yàn)恰好為2次的概率.

          (2)首次化驗(yàn)化驗(yàn)費(fèi)為10元,第二次化驗(yàn)化驗(yàn)費(fèi)為8元,第三次及其以后每次化驗(yàn)費(fèi)都是6元,列出方案甲所需化驗(yàn)費(fèi)用的分布列,并估計(jì)用方案甲平均需要體驗(yàn)費(fèi)多少元?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】我國古代數(shù)學(xué)家劉徽是公元三世紀(jì)世界上最杰出的數(shù)學(xué)家,他在《九章算術(shù)圓田術(shù)》注中,用割圓術(shù)證明了圓面積的精確公式,并給出了計(jì)算圓周率的科學(xué)方法.所謂“割圓術(shù)”,即通過圓內(nèi)接正多邊形細(xì)割圓,并使正多邊形的周長無限接近圓的周長,進(jìn)而來求得較為精確的圓周率(圓周率指圓周長與該圓直徑的比率).劉徽計(jì)算圓周率是從正六邊形開始的,易知圓的內(nèi)接正六邊形可分為六個(gè)全等的正三角形,每個(gè)三角形的邊長均為圓的半徑

          ,此時(shí)圓內(nèi)接正六邊形的周長為

          ,此時(shí)若將圓內(nèi)接正六邊形的周長等同于圓的周長,可得圓周率為3,當(dāng)用正二十四邊形內(nèi)接于圓時(shí),按照上述算法,可得圓周率為__________.(參考數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】平面直角坐標(biāo)系中,已知曲線,將曲線上所有點(diǎn)橫坐標(biāo),縱坐標(biāo)分別伸長為原來的倍和倍后,得到曲線

          (1)試寫出曲線的參數(shù)方程;

          (2)在曲線上求點(diǎn),使得點(diǎn)到直線的距離最大,并求距離最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列5個(gè)命題中正確命題的個(gè)數(shù)是( )

          ①對于命題p:x∈R,使得x2+x+1<0,則綈p:x∈R,均有x2+x+1>0;

          ②m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;

          ③已知回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為(4,5),則線性回歸方程為=1.23x+0.08;

          ④若實(shí)數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為;

          ⑤曲線y=x2與y=x所圍成圖形的面積是S= (x-x2)dx.

          A.2 B.3 C.4 D.5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前三項(xiàng)與數(shù)列{bn}的前三項(xiàng)相同,且a12a222a3+…+2n-1an=8n對任意nN*都成立,數(shù)列{bn+1-bn}是等差數(shù)列

          1求數(shù)列{an}與{bn}的通項(xiàng)公式;

          2是否存在kN*,使得bk-ak0,1?請說明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓經(jīng)過點(diǎn),且離心率為

          (Ⅰ)求橢圓的方程

          (Ⅱ)設(shè)是橢圓上的點(diǎn)直線為坐標(biāo)原點(diǎn))的斜率之積為.若動(dòng)點(diǎn)滿足,試探究是否存在兩個(gè)定點(diǎn)使得為定值?若存在,的坐標(biāo);若不存在請說明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】端午節(jié)吃粽子是我國的傳統(tǒng)習(xí)俗.設(shè)一盤中裝有10個(gè)粽子,其中豆沙粽2個(gè),肉粽3個(gè),白粽5個(gè),這三種粽子的外觀完全相同.從中任意選取3個(gè).

          (1)求三種粽子各取到1個(gè)的概率;

          (2)設(shè)X表示取到的豆沙粽個(gè)數(shù),求X的分布列與數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

          (1)求到平面的距離

          (2)在線段上是否存在一點(diǎn),使?若存在,求出的值;若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案