日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當(dāng)x∈(0,+∞)時(shí),f(x)=2x
          (1)求f(log2 )的值;
          (2)求f(x)的解析式.

          【答案】
          (1)解:∵f(x)為奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),f(x)=2x,

          ∴f(log2 )=f(﹣log23)=﹣f(log23)=﹣ =﹣3


          (2)解:設(shè)任意的x∈(﹣∞,0),則﹣x∈(0,+∞),

          ∵當(dāng)x∈(0,+∞)時(shí),f(x)=2x,∴f(﹣x)=2x

          又f(x)是定義在R上的奇函數(shù),則f(﹣x)=﹣f(x),

          ∴f(x)=﹣f(﹣x)=﹣2x,即當(dāng)x∈(﹣∞,0)時(shí),f(x)=﹣2x;

          又f(0)=﹣f(0),f(0)=0,

          綜上可知,f(x)=


          【解析】(1)利用函數(shù)的奇偶性及已知表達(dá)式可得f(log2 )=f(﹣log23)=﹣f(log23)=﹣ ,再由對(duì)數(shù)運(yùn)算性質(zhì)可得結(jié)果;(2)設(shè)任意的x∈(﹣∞,0),則﹣x∈(0,+∞),由已知表達(dá)式可求f(﹣x),再由奇偶性可得f(x);由奇偶性易求f(0);

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f (x)=
          (1)求f(x)的定義域;
          (2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)某商店一個(gè)月內(nèi)每天的顧客人數(shù)進(jìn)行統(tǒng)計(jì),得到樣本的莖葉圖(如圖所示).則該樣本的中位數(shù)、眾數(shù)、極差分別是(

          A.46 45 56
          B.46 45 53
          C.47 45 56
          D.45 47 53

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=m﹣
          (1)若f(x)是R上的奇函數(shù),求m的值
          (2)用定義證明f(x)在R上單調(diào)遞增
          (3)若f(x)值域?yàn)镈,且D[﹣3,1],求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)P表示一個(gè)點(diǎn),a,b表示兩條直線,α,β表示兩個(gè)平面,給出下列四個(gè)命題,其中正確的命題是(
          ①P∈a,P∈αaα
          ②a∩b=P,bβaβ
          ③a∥b,aα,P∈b,P∈αbα
          ④α∩β=b,P∈α,P∈βP∈b.
          A.①②
          B.②③
          C.①④
          D.③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線y= x與拋物線y= x2﹣4交于A,B兩點(diǎn),線段AB的垂直平分線與直線y=﹣5交于Q點(diǎn),當(dāng)P為拋物線上位于線段AB下方(含A,B)的動(dòng)點(diǎn)時(shí),則△OPQ面積的最大值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如果函數(shù)f(x)= (m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在區(qū)間[ ,2]上單調(diào)遞減,那么mn的最大值為(
          A.16
          B.18
          C.25
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如果對(duì)于一切的正實(shí)數(shù)x、y,不等式 ﹣cos2x≥asinx﹣ 都成立,則實(shí)數(shù)a的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D﹣ABC,如圖2所示.

          (1)求證:BC⊥平面ACD;
          (2)求幾何體D﹣ABC的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案