日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)則f[f(-1)]的值為   
          【答案】分析:現(xiàn)根據(jù)函數(shù)的解析式求出f(-1)的值,從而求出f[f(-1)]的值.
          解答:解:∵函數(shù),∴f(-1)==1,∴f[f(-1)]=f(1)=1.
          故答案為:1.
          點(diǎn)評(píng):本題主要考查利用分段函數(shù)求函數(shù)的值的方法,體現(xiàn)了分類討論的數(shù)學(xué)思想,分類討論是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)y=f(x)的定義域?yàn)椋?,+∞),f(x)的導(dǎo)函數(shù)為f′(x),且對(duì)任意正數(shù)X均有f′(x)>
          f(x)
          x
          ,則下列結(jié)論中正確的是(  )
          A、y=f(x)在(0,+∞)上為增函數(shù)
          B、y=
          f(x)
          x
          在(0,+∞)上為減函數(shù)
          C、若x1,x2∈(0,+∞)則f((x1)+f(x2)>f(x1+x2
          D、若x1,x2∈(0,+∞),則f(x1)+f(x2)<f(x1+x2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f'(x)是f(x)的導(dǎo)數(shù),記f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),給出下列四個(gè)結(jié)論:
          ①若f(x)=xn,則f(5)(1)=120;
          ②若f(x)=cosx,則f(4)(x)=f(x);
          ③若f(x)=ex,則f(n)(x)=f(x)(n∈N+);
          ④設(shè)f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定義域上的可導(dǎo)函數(shù),h(x)=f(x)•g(x),則h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
          則結(jié)論正確的是
          ①②③
          ①②③
          (多填、少填、錯(cuò)填均得零分).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對(duì)公共定義域內(nèi)的任意實(shí)數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號(hào)在公共點(diǎn)處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-
          1
          x

          (I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
          (Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù) f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得f′(x3)=
          f(x2)-f(x1)
          x2-x1
          .請(qǐng)結(jié)合(I)中的結(jié)論證明x1<x3<x2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          x3(x>0)
          (3-a)x-a(x≤0)
          ,給出下列四個(gè)命題:
          (1)當(dāng)a>0時(shí),函數(shù)f(x)的值域?yàn)閇0,+∞),
          (2)對(duì)于任意的x1,x2∈R,且x1≠x2,若
          f(x1)-f(x2)
          x1-x2
          >0恒成立,則a∈[0,3);  
          (3)對(duì)于任意的x1,x2∈(0,+∞),且x1≠x2,恒有
          f(x1)+f(x)2
          2
          <f(
          x1+x2
          2
          );  
          (4)對(duì)于任意的x1,x2∈(0,+∞),且x1≠x2,若不等式|f(x1)-f(x2)|>t|x1-x2|恒成立,則t的最大值為0.其中正確的有
          (2)(4)
          (2)(4)
          (只填相應(yīng)的序號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f (x)是定義在R上的奇函數(shù),若f(x)在區(qū)間[1,a](a>2)上單調(diào)遞增,且f (x)>0,則以下不等式不一定成立的是( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案