日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          斜率為1的直線l與橢圓+y2=1相交于AB兩點,則|AB|的最大值為(    )

          A. 2                    B.                      C.                     D. 

          C


          解析:

          弦長|AB|=。

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          橢圓C的方程
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,斜率為1的直L與橢C交于A(x1,y1)B(x2,y2)兩點.
          (Ⅰ)若橢圓的離心率e=
          3
          2
          ,直線l過點M(b,0),且
          OA
          OB
          =-
          12
          5
          ,求橢圓C的方程;
          (Ⅱ)直線l過橢圓的右焦點F,設向量
          OP
          =λ(
          OA
          +
          OB
          )(λ>0),若點P在橢C上,λ的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2011•浦東新區(qū)三模)已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
          (1)當m=1時,求橢圓C的方程;
          (2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
          (3)由拋物線弧y2=4mx(0≤x≤
          2m
          3
          )
          和橢圓弧
          x2
          4m2
          +
          y2
          3m2
          =1
          (
          2m
          3
          ≤x≤2m)

          (m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          橢圓C的方程數學公式,斜率為1的直L與橢C交于A(x1,y1)B(x2,y2)兩點.
          (Ⅰ)若橢圓的離心率數學公式,直線l過點M(b,0),且數學公式,求橢圓C的方程;
          (Ⅱ)直線l過橢圓的右焦點F,設向量數學公式=λ(數學公式+數學公式)(λ>0),若點P在橢C上,λ的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源:2011年上海市浦東新區(qū)高考數學三模試卷(理科)(解析版) 題型:解答題

          已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
          (1)當m=1時,求橢圓C的方程;
          (2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
          (3)由拋物線弧y2=4mx和橢圓弧
          (m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數學 來源:2011年上海市浦東新區(qū)高考數學三模試卷(理科)(解析版) 題型:解答題

          已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
          (1)當m=1時,求橢圓C的方程;
          (2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
          (3)由拋物線弧y2=4mx和橢圓弧
          (m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

          查看答案和解析>>

          同步練習冊答案