(本題滿分14分)已知函數(shù).
(Ⅰ)當(dāng)時,函數(shù)
取得極大值,求實數(shù)
的值;
(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間
內(nèi)存在導(dǎo)數(shù),則存在
,使得
. 試用這個結(jié)論證明:若函數(shù)
(其中
),則對任意
,都有
;
(Ⅲ)已知正數(shù)滿足
,求證:對任意的實數(shù)
,若
時,都有
.
(1)
(2)構(gòu)造函數(shù)h(x)=f(x)-g(x),然后借助于函數(shù)的導(dǎo)數(shù)判定單調(diào)性,然后證明最小值大于零即可。而第三問中,在上一問的基礎(chǔ)上,運用結(jié)論放縮得到證明。
【解析】
試題分析:(Ⅰ)由題設(shè),函數(shù)的定義域為,且
所以,得
,此時.
當(dāng)時,
,函數(shù)
在區(qū)間
上單調(diào)遞增;
當(dāng)時,
,函數(shù)
在區(qū)間
上單調(diào)遞減.
函數(shù)
在
處取得極大值,故
…………………………4分
(Ⅱ)令,
則.
因為函數(shù)在區(qū)間
上可導(dǎo),則根據(jù)結(jié)論可知:存在
使得 …………………………7分
又,
當(dāng)
時,
,從而
單調(diào)遞增,
;
當(dāng)時,
,從而
單調(diào)遞減,
;
故對任意,都有
. …………………………9分
(Ⅲ),且
,
,
同理, …………………………12分
由(Ⅱ)知對任意
,都有
,從而
.
…………………………14分
考點:考查了導(dǎo)數(shù)的運用
點評:解決該試題的關(guān)鍵是根據(jù)導(dǎo)數(shù)的符號,確定函數(shù)單調(diào)性,進而分析得到最值,證明不等式的成立。屬于中檔題 。
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)已知向量 ,
,函數(shù)
. (Ⅰ)求
的單調(diào)增區(qū)間; (II)若在
中,角
所對的邊分別是
,且滿足:
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)已知,且以下命題都為真命題:
命題 實系數(shù)一元二次方程
的兩根都是虛數(shù);
命題 存在復(fù)數(shù)
同時滿足
且
.
求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)已知函數(shù)
(1)若,求x的值;
(2)若對于
恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)
已知橢圓:
的離心率為
,過坐標(biāo)原點
且斜率為
的直線
與
相交于
、
,
.
⑴求、
的值;
⑵若動圓與橢圓
和直線
都沒有公共點,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題
((本題滿分14分)
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF
(如圖).
(1)當(dāng)x=2時,求證:BD⊥EG ;
(2)若以F、B、C、D為頂點的三棱錐的體積記為,
求的最大值;
(3)當(dāng)取得最大值時,求二面角D-BF-C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com