日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 雙曲線C:x2-y2=2右支上的弦AB過(guò)右焦點(diǎn)F.
          (1)求弦AB的中點(diǎn)M的軌跡方程
          (2)是否存在以AB為直徑的圓過(guò)原點(diǎn)O?若存在,求出直線AB的斜率K的值.若不存在,則說(shuō)明理由.
          分析:(1)利用點(diǎn)差法,可求求弦AB的中點(diǎn)M的軌跡方程;
          (2)以AB為直徑的圓過(guò)原點(diǎn)O,可得OA⊥OB得:x1x2+y1y2=0,利用韋達(dá)定理,即可得出結(jié)論.
          解答:解:(1)設(shè)M(x,y),A(x1,y1)、B(x2,y2),則x12-y12=2,x22-y22=2,
          兩式相減可得(x1+x2)(x1-x2)-(y1+y2)(y1-y2)=0,
          ∴2x(x1-x2)-2y(y1-y2)=0,
          y1-y2
          x1-x2
          =
          x
          y
          ,
          ∵雙曲線C:x2-y2=2右支上的弦AB過(guò)右焦點(diǎn)F(2,0),
          y
          x-2
          =
          x
          y
          ,
          化簡(jiǎn)可得x2-2x-y2=0,(x≥2)-------(6分)  
          (2)假設(shè)存在,設(shè)A(x1,y1),B(x2,y2),lAB:y=k(x-2)
          由已知OA⊥OB得:x1x2+y1y2=0,
          (1+k2)x1x2-2k2(x1+x2)+4k2=0---------①
          x2-y2=2
          y=k(x-2)
          ⇒(1-k2)x2+4k2x-4k2-2=0

          所以x1+x2=
          4k2
          k2-1
          ,x1x2=
          4k2+2
          k2-1
          (k2≠1)--------②
          聯(lián)立①②得:k2+1=0無(wú)解
          所以這樣的圓不存在.-----------------------(14分)
          點(diǎn)評(píng):本題考查軌跡方程,考查點(diǎn)差法的運(yùn)用,考查直線與雙曲線的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          雙曲線C:x2-y2=1的離心率e=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知直線l:y=kx-1與雙曲線C:x2-y2=4
          (1)如果l與C只有一個(gè)公共點(diǎn),求k的值;
          (2)如果l與C的左右兩支分別相交于A(x1,y1),B(x2,y2)兩點(diǎn),且|x1-x2|=2
          5
          ,求k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若雙曲線C:x2-y2=1的右頂點(diǎn)為A,過(guò)A的直線l與雙曲線C的兩條漸近線交于P,Q兩點(diǎn),且
          PA
          =2
          AQ
          ,則直線l的斜率為
          ±3
          ±3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2007•長(zhǎng)寧區(qū)一模)設(shè)直線l的方程為y=kx-1,等軸雙曲線C:x2-y2=a2(a>0)的中心在原點(diǎn),右焦點(diǎn)坐標(biāo)為( 
          2
          ,0).
          (1)求雙曲線方程;
          (2)設(shè)直線l與雙曲線C的右支交于不同的兩點(diǎn)A,B,記AB中點(diǎn)為M,求k的取值范圍,并用k表示M點(diǎn)的坐標(biāo).
          (3)設(shè)點(diǎn)Q(-1,0),求直線QM在y軸上截距的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知雙曲線C:x2-y2=1的左右焦點(diǎn)分別為F1、F2,P是C上一點(diǎn),∠F1PF2=60°,
          ①求F1、F2的坐標(biāo);
          ②求雙曲線的準(zhǔn)線方程及離心率;
          ③求△F1PF2的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案