日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)f(x)=
          x,x∈P
          -x,x∈M
          其中P,M為實數(shù)集R的兩個非空子集,規(guī)定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.給出下列四個判斷:
          ①若P∩M=∅,則f(P)∩f(M)=∅;②若P∩M≠∅,則f(P)∩f(M)≠∅;③若P∪M=R,則f(P)∪f(M)=R; ④若P∪M≠R,則f(P)∪f(M)≠R.
          其中判斷不正確的有
           
          分析:數(shù)學中說明命題不正確,只需要舉出反例依次判斷即可.
          解答:解:
          若P={1},M={-1}
          則f(P)={1},f(M)={1}
          則f(P)∩f(M)≠∅
          故①錯
          若P={1,2},M={1}
          則f(P)={1,2},f(M)={-1}
          則f(P)∩f(M)=∅
          故②錯
          若P={非負實數(shù)},M={負實數(shù)}
          則f(P)={非負實數(shù)},f(M)={正實數(shù)}
          則f(P)∪f(M)≠R.
          故③錯
          若P={非負實數(shù)},M={正實數(shù)}
          則f(P)={非負實數(shù)},f(M)={負實數(shù)}
          則f(P)∪f(M)=R.
          故④錯
          故答案為:①②③④
          點評:本題考查了子集與交集、并集運算的轉(zhuǎn)換,命題為假只需要舉出反例即可,屬于基礎(chǔ)題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          探究函數(shù)f(x)=x+
          4
          x
          ,x∈(0,+∞)的最小值,并確定取得最小值時x的值.列表如下:
          x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
          y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 4.8 7.57
          請觀察表中y值隨x值變化的特點,完成以下的問題.
          (1)函數(shù)f(x)=x+
          4
          x
          (x>0)在區(qū)間
          (0,2)
          (0,2)
          上遞減;并利用單調(diào)性定義證明.函數(shù)f(x)=x+
          4
          x
          (x>0)在區(qū)間
          (2,+∞)
          (2,+∞)
          上遞增.當x=
          2
          2
          時,y最小=
          4
          4

          (2)函數(shù)f(x)=x+
          4
          x
          (x<0)時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          探究函數(shù)f(x)=x+
          4
          x
            x∈(0,+∞)的最小值,并確定相應(yīng)的x的值,列表如下,請觀察表中y值隨x值變化的特點,完成下列問題:
          x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
          y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
          (1)若當x>0時,函數(shù)f(x)=x+
          4
          x
          時,在區(qū)間(0,2)上遞減,則在
           
          上遞增;
          (2)當x=
           
          時,f(x)=x+
          4
          x
          ,x>0的最小值為
           

          (3)試用定義證明f(x)=x+
          4
          x
          ,x>0在區(qū)間上(0,2)遞減;
          (4)函數(shù)f(x)=x+
          4
          x
          ,x<0有最值嗎?是最大值還是最小值?此時x為何值?
          解題說明:(1)(2)兩題的結(jié)果直接填寫在答題卷中橫線上;(4)題直接回答,不需證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          同步練習冊答案