日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定點(diǎn)A(2,0),圓O的方程為x2+y2=8,動(dòng)點(diǎn)M在圓O上,那么∠OMA的最大值是( 。
          A、
          π
          6
          B、
          π
          4
          C、arccos
          2
          3
          D、arccos
          2
          4
          分析:設(shè)|MA|=x,則可求得|OM|,|AO|的值,進(jìn)而利用余弦定理得到cos∠OMA的表達(dá)式,利用均值不等式求得cos∠OMA的最小值,進(jìn)而求得∠OMA的最大值.
          解答:解:設(shè)|MA|=x,則|OM|=2
          2
          ,|AO|=2
          由余弦定理可知cos∠OMA=
          8+x2-4
          4
          2
          x
          =
          1
          4
          2
          •(
          4
          x
          +x)≥
          2
          2
          (當(dāng)且僅當(dāng)x=2時(shí)等號(hào)成立)
          ∴∠OMA≤
          π
          4

          故選B.
          點(diǎn)評(píng):本題主要考查了點(diǎn)與圓的位置關(guān)系,余弦定理的應(yīng)用,均值不等式求最值.考查了學(xué)生綜合分析問(wèn)題和解決問(wèn)題的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定點(diǎn)A(-2,0),動(dòng)點(diǎn)B是圓F:(x-2)2+y2=64(F為圓心)上一點(diǎn),線段AB的垂直平分線交BF于P;
          (1)求動(dòng)點(diǎn)P的軌跡E的方程;
          (2)直線y=
          3
          x+1與曲線E交于M,N兩點(diǎn),試問(wèn)在曲線E位于第二象限部分上是否存在一點(diǎn)C,使
          OM
          +
          ON
          OC
          共線(O為坐標(biāo)原點(diǎn))?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知定點(diǎn)A(2,0),點(diǎn)Q是圓x2+y2=1上的動(dòng)點(diǎn),∠AOQ的平分線交AQ于M,當(dāng)Q點(diǎn)在圓上移動(dòng)時(shí),求動(dòng)點(diǎn)M的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知定點(diǎn)A(2,0)及拋物線y2=x,點(diǎn)B在該拋物線上,若動(dòng)點(diǎn)P使得
          AP
          +2
          BP
          =
          0
          ,求動(dòng)點(diǎn)P的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•石家莊一模)在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-2,0)、B(2,0),M是動(dòng)點(diǎn),且直線MA與直線MB的斜率之積為-
          1
          4
          ,設(shè)動(dòng)點(diǎn)M的軌跡為曲線C.
          (I)求曲線C的方程;
          (II )過(guò)定點(diǎn)T(-1,0)的動(dòng)直線l與曲線C交于P,Q兩點(diǎn),是否存在定點(diǎn)S(s,0),使得
          SP
          SQ
          為定值,若存在求出s的值;若不存在請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•石家莊一模)在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-2,0)、B(2,0),M是動(dòng)點(diǎn),且直線MA與直線MB的斜率之積為-
          1
          4
          ,設(shè)動(dòng)點(diǎn)M的軌跡為曲線C.
          (I)求曲線C的方程;
          (II)過(guò)定點(diǎn)T(-1,0)的動(dòng)直線l與曲線C交于P,Q兩點(diǎn),若S(-
          17
          8
          ,0),證明:
          SP
          SQ
          為定值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案